Skip to main content
Log in

Lipopolysaccharide Induced Upregulation of β-1,4-Galactosyltransferase-I in Schwann cell

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

β4 Galactosylation of glycoproteins is one of the most important post-translational modifications. Recent studies have demonstrated that aberrant galactosylation associates with some inflammation diseases. β-1,4-galactosyltransferase-I (β-1,4-GalT-I), which transfers galactose to the terminal N-acetylglucosamine of N- and O-linked glycans in a β-1,4- linkage, considered to be the major galactosyltransferse among the seven members of the subfamily responsible for β4 galactosylation. In the present study, we investigated the expression of β-1,4-GalT-I in Schwann cells under Lipopolysaccharide (LPS) treatment. RT-PCR revealed that the β-1,4-GalT-I mRNA was significant increased as early as 2 h after LPS stimulation. Immunofluorescence showed that β-1,4-GalT-I was located in Golgi apparatus and membrane of Schwann cells. With the 1 μg/ml LPS treatment, expression levels of β-1,4-GalT-I was much higher compared with control group. In addition, lectin blot indicated that the β4 galactosylation of glycoproteins such as integrin α5 was enhanced, which may due to the induced β-1,4-GalT-I expression. These results suggested that β-1,4-GalT-I may play an important role in adhesion and migration of Schwann cells during inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Powell, L. D., K. Paneerselvam, R. Vij, S. Diaz, A. Manzi, N. Buist, H. Freeze, and A. Varki. 1994. Carbohydrate-deficient glycoprotein syndrome: not an N-linked oligosaccharide processing defect, but an abnormality in lipid-linked oligosaccharide biosynthesis? J. Clin. Invest. 94:1901–1909. doi:10.1172/JCI117540.

    Article  PubMed  CAS  Google Scholar 

  2. Fukuda, M. N., K. A. Masri, A. Dell, L. Luzzatto, and K. W. Moremen. 1990. Incomplete synthesis of N-glycans in congenital dyserythropoietic anemia type ii caused by a defect in the gene encoding alpha-mannosidase ii. Proc. Natl. Acad. Sci. U. S. A. 87:7443–7447.

    Article  PubMed  CAS  Google Scholar 

  3. Watanabe, H., K. Nakashima, H. Saito, and M. Slaytor. 2002. New endo-beta-1,4-glucanases from the parabasalian symbionts, pseudotrichonympha grassii and holomastigotoides mirabile of coptotermes termites. Cell. Mol. Life Sci. 59:1983–1992.

    Article  PubMed  CAS  Google Scholar 

  4. Apweiler, R., H. Hermjakob, and N. Sharon. 1999. On the frequency of protein glycosylation, as deduced from analysis of the swiss-prot database. Biochim. Biophys. Acta. 1473:4–8. doi:S0304-4165(99)00165-8[pii].

    PubMed  CAS  Google Scholar 

  5. Shi, X., S. Amindari, K. Paruchuru, D. Skalla, H. Burkin, B. D. Shur, and D. J. Miller. 2001. Cell surface beta-1,4-galactosyltransferase-I activates g protein-dependent exocytotic signaling. Development. 128:645–654.

    PubMed  CAS  Google Scholar 

  6. Hathaway, H. J., and B. D. Shur. 1992. Cell surface beta 1,4-galactosyltransferase functions during neural crest cell migration and neurulation in vivo. J. Cell Biol. 117:369–382.

    Article  PubMed  CAS  Google Scholar 

  7. Huang, Q., B. D. Shur, and P. C. Begovac. 1995. Overexpressing cell surface beta 1.4-galactosyltransferase in PC12 cells increases neurite outgrowth on laminin. J. Cell Sci. 108(Pt 2):839–847.

    PubMed  CAS  Google Scholar 

  8. Eckstein, D. J., and B. D. Shur. 1992. Cell surface beta-1,4-galactosyltransferase is associated with the detergent-insoluble cytoskeleton on migrating mesenchymal cells. Exp. Cell Res. 201:83–90. doi:0014-4827(92)90350-H[pii].

    Article  PubMed  CAS  Google Scholar 

  9. Evans, S. C., L. C. Lopez, and B. D. Shur. 1993. Dominant negative mutation in cell surface beta 1,4-galactosyltransferase inhibits cell–cell and cell–matrix interactions. J. Cell Biol. 120:1045–1057.

    Article  PubMed  CAS  Google Scholar 

  10. Maillet, C. M., and B. D. Shur. 1994. Perturbing cell surface beta-(1,4)-galactosyltransferase on F9 embryonal carcinoma cells arrests cell growth and induces laminin synthesis. J. Cell Sci. 107(Pt 6):1713–1724.

    PubMed  CAS  Google Scholar 

  11. Miller, D. J., M. B. Macek, and B. D. Shur. 1992. Complementarity between sperm surface beta-1,4-galactosyltransferase and egg-coat ZP3 mediates sperm–egg binding. Nature. 357:589–593. doi:10.1038/357589a0.

    Article  PubMed  CAS  Google Scholar 

  12. Asano, M., S. Nakae, N. Kotani, N. Shirafuji, A. Nambu, and N. Hashimoto. 2003. Impaired selectin-ligand biosynthesis and reduced inflammatory responses in beta-1,4-galactosyltransferase-I-deficient mice. Blood. 102:1678–1685. doi:10.1182/619blood-2003-03-0836.

    Article  PubMed  CAS  Google Scholar 

  13. Mori, R., T. Kondo, T. Nishima, and M. Asano. 2004. Impairment of skin wound healing in β-1,4-galactosyltransferase-deficient mice with reduced leukocyte recruitment. Am. J. Pathol. 164:1303–1314.

    PubMed  CAS  Google Scholar 

  14. Shen, A., H. Wang, Y. Zhang, J. Yan, D. Zhu, and J. Gu. 2002. Expression of beta-1,4-galactosyltransferase ii and v in rat injured sciatic nerves. Neurosci. Lett. 327:45–48. doi:S0304394002003816[pii].

    Article  PubMed  CAS  Google Scholar 

  15. Shen, A., J. Chen, J. Qian, J. Zhu, L. Hu, M. Yan, D. Zhou, Y. Gao, J. Yang, F. Ding, and C. Cheng. 2009. Elevated beta1,4-galactosyltransferase-i induced by the intraspinal injection of lipopolysaccharide. Glycoconj. J. 26:19–31. doi:10.1007/s10719-008-9158-0.

    Article  PubMed  CAS  Google Scholar 

  16. Liu, J., C. H. Chau, H. Liu, B. R. Jang, X. Li, Y. S. Chan, and D. K. Shum. 2006. Upregulation of chondroitin 6-sulphotransferase-1 facilitates schwann cell migration during axonal growth. J. Cell Sci. 119:933–942. doi:119/5/933[pii]10.1242/jcs.02796.

    Article  PubMed  CAS  Google Scholar 

  17. Gold, R., K. V. Toyka, and H. P. Hartung. 1995. Synergistic effect of IFN-gamma and TNF-alpha on expression of immune molecules and antigen presentation by schwann cells. Cell. Immunol. 165:65–70. doi:S0008-8749(85)71187-2[pii]10.1006/cimm.1995.1187.

    Article  PubMed  CAS  Google Scholar 

  18. Hathaway, H. J., S. C. Evans, D. H. Dubois, C. I. Foote, B. H. Elder, and B. D. Shur. 2003. Mutational analysis of the cytoplasmic domain of beta1,4-galactosyltransferase i: Influence of phosphorylation on cell surface expression. J. Cell Sci. 116:4319–4330. doi:10.1242/jcs.00720 jcs.00720[pii].

    Article  PubMed  CAS  Google Scholar 

  19. Glasgow, L. R., J. C. Paulson, and R. L. Hill. 1977. Systematic purification of five glycosidases from streptococcus (diplococcus) pneumoniae. J. Biol. Chem. 252:8615–8623.

    PubMed  CAS  Google Scholar 

  20. Yan, M., C. Cheng, X. Shao, J. Qian, A. Shen, and C. Xia. 2008. Expression change of beta-1,4 galactosyltransferase I, V mRNAs and Galbeta1,4GlcNAc group in rat sciatic nerve after crush. J. Mol. Histol. 39:317–328.

    Article  PubMed  CAS  Google Scholar 

  21. Begovac, P. C., D. E. Hall, and B. D. Shur. 1991. Laminin fragment E8 mediates PC12 cell neurite outgrowth by binding to cell surface beta 1,4 galactosyltransferase. J. Cell Biol. 113:637–644.

    Article  PubMed  CAS  Google Scholar 

  22. Begovac, P. C., and B. D. Shur. 1990. Cell surface galactosyltransferase mediates the initiation of neurite outgrowth from PC12 cells on laminin. J. Cell Biol. 110:461–470.

    Article  PubMed  CAS  Google Scholar 

  23. Perlin, J. R., and W. S. Talbot. 2007. Putting the glue in glia: Necls mediate schwann cell axon adhesion. J. Cell Biol. 178:721–723. doi:jcb.200708019[pii]10.1083/jcb.200708019.

    Article  PubMed  CAS  Google Scholar 

  24. Papastefanaki, F., J. Chen, A. A. Lavdas, D. Thomaidou, M. Schachner, and R. Matsas. 2007. Grafts of schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury. Brain. 130:2159–2174. doi:awm155[pii]10.1093/brain/awm155.

    Article  PubMed  Google Scholar 

  25. Constantin, G., L. Piccio, S. Bussini, A. Pizzuti, E. Scarpini, P. Baron, G. Conti, S. Pizzul, and G. Scarlato. 1999. Induction of adhesion molecules on human schwann cells by proinflammatory cytokines, an immunofluorescence study. J. Neurol. Sci. 170:124–130. doi:S0022-510X(99)00202-6[pii].

    Article  PubMed  CAS  Google Scholar 

  26. Jimenez, D., P. Roda-Navarro, T. A. Springer, and J. M. Casasnovas. 2005. Contribution of N-linked glycans to the conformation and function of intercellular adhesion molecules (ICAMs). J. Biol. Chem. 280:5854–5861. doi:M412104200[pii]10.1074/jbc.M412104200.

    Article  PubMed  CAS  Google Scholar 

  27. Furukawa, K., and T. Sato. 1999. Beta-1,4-galactosylation of N-glycans is a complex process. Biochim. Biophys. Acta. 1473:54–66. doi:S0304-4165(99)00169-5[pii].

    PubMed  CAS  Google Scholar 

  28. Zhao, Y., Y. Sato, T. Isaji, T. Fukuda, A. Matsumoto, E. Miyoshi, J. Gu, and N. Taniguchi. 2008. Branched N-glycans regulate the biological functions of integrins and cadherins. FEBS J. 275:1939–1948. doi:EJB6346[pii]10.1111/j.1742-4658.2008.06346.x.

    Article  PubMed  CAS  Google Scholar 

  29. Kido, M., and M. Shibuya. 1998. Isolation and characterization of mouse ovarian surface epithelial cell lines. Pathol. Res. Pract. 194:725–730.

    PubMed  CAS  Google Scholar 

  30. Semel, A. C., E. C. Seales, A. Singhal, E. A. Eklund, K. J. Colley, and S. L. Bellis. 2002. Hyposialylation of integrins stimulates the activity of myeloid fibronectin receptors. J. Biol. Chem. 277:32830–32836. doi:10.1074/jbc.M202493200M202493200[pii].

    Article  PubMed  CAS  Google Scholar 

  31. Isaji, T., Y. Sato, Y. Zhao, E. Miyoshi, Y. Wada, N. Taniguchi, and J. Gu. 2006. N-glycosylation of the beta-propeller domain of the integrin alpha5 subunit is essential for alpha5beta1 heterodimerization, expression on the cell surface, and its biological function. J. Biol. Chem. 281:33258–33267. doi:M607771200[pii]10.1074/jbc.M607771200.

    Article  PubMed  CAS  Google Scholar 

  32. Moss, L., A. Prakobphol, T. W. Wiedmann, S. J. Fisher, and C. H. Damsky. 1994. Glycosylation of human trophoblast integrins is stage and cell-type specific. Glycobiology. 4:567–575.

    Article  PubMed  CAS  Google Scholar 

  33. Wadsworth, S., M. J. Halvorson, A. C. Chang, and J. E. Coligan. 1993. Multiple changes in vla protein glycosylation, expression, and function occur during mouse t cell ontogeny. J. Immunol. 150:847–857.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aiguo Shen or Chun Cheng.

Additional information

Huiguang Yang and Ling Hu contributed equally to this work.

Grant sponsor: National Natural Science Foundation of China (no.30770488 and no. 30870320); Natural Science Foundation of Jiangsu province (no.BK2006547); Health Project of Jiangsu Province (H200632).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Hu, L., Chen, J. et al. Lipopolysaccharide Induced Upregulation of β-1,4-Galactosyltransferase-I in Schwann cell. Inflammation 32, 279–286 (2009). https://doi.org/10.1007/s10753-009-9131-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-009-9131-5

KEY WORDS

Navigation