Skip to main content
Log in

Study of structural, optical, surface and electrochemical properties of Co3O4 nanoparticles for energy storage applications

  • Research
  • Published:
Interactions Aims and scope Submit manuscript

Abstract

Supercapacitors (SCs) are a kind of energy storage that replaces conventional batteries and capacitors. Compared to capacitors, they can store more energy and supply power at a faster rate. Co3O4 nanoparticles have been employed in various products, including rechargeable Li-ion batteries, solar cells, supercapacitors, field effect transistors, field emission materials, magneto-resistive devices, capacitors, and gas sensors. Cobalt is valuable in various undertakings because, as early research found, it may reveal irregular oxidation forms (Co2+, Co3+, and Co4+). Because cobalt has a dual nature, its oxide structures can contain three distinct twist forms: inferior, intermediate, and superior. Co3O4 nanoparticles were created in the current study utilizing the sol-gel technique. Co3O4 nanoparticles with a cubic phase and a spinel structure underwent a two-hour thermal treatment at 600 °C in a furnace. The exceedingly pure cubic crystalline phases are visible using XRD. The crystallite size is 47 nm. Optical parameters were discovered via FTIR and U-V Visible spectroscopy with an energy band gap of 3.67 eV. The FESEM and EDX were also used to compute the surface morphology and elemental mapping of Co3O4. Additionally, Co3O4 electrochemical characteristics as determined by cyclic voltammetry (CV) with a specific capacitance of 532 F/g, galvanostatic charge-discharge with a specific capacitance of 614.2 F/g, and EIS confirmed the capacitive behavior of the Co3O4, which displayed a straight line at low frequencies and a very brief kinetic arc at high frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Raveau, B., Md Motin, S.: Charge ordering in cobalt oxides: Impact on structure, magnetic and transport properties. Z. für Anorganische und Allgemeine Chemie. 641, 8–9 (2015)

    Article  Google Scholar 

  2. Su, Y., Zhu, Y., Jiang, H., Shen, J., Yang, X., Zou, W., Chen, J., Li, C.: Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nanoscale. 6(24), 15080–15089 (2014)

    Article  ADS  Google Scholar 

  3. Faucon, M.-P., Pourret, O., Lange, B.: Element case studies: Cobalt and copper. Agromining: Farming Metals: Extracting Unconv. Resour. Using Plants: 233–239. (2018)

  4. Li, W., Jung, H., Hoa, N.D., Kim, D., Soon-Ku Hong, and, Kim, H.: Nanocomposite of cobalt oxide nanocrystals and single-walled carbon nanotubes for a gas sensor application. Sens. Actuators B. 150(1), 160–166 (2010)

    Article  Google Scholar 

  5. Kumar, R., Kim, H.-J., Park, S., Srivastava, A., Il-Kwon, O.: Graphene-wrapped and cobalt oxide-intercalated hybrid for extremely durable super-capacitor with ultrahigh energy and power densities. Carbon. 79, 192–202 (2014)

    Article  Google Scholar 

  6. Nikam, A.V., Prasad, B.L.V., Kulkarni, A.A.: Wet chemical synthesis of metal oxide nanoparticles: A review. CrystEngComm. 20(35), 5091–5107 (2018)

    Article  Google Scholar 

  7. Chavali, M.S., Maria, P.: Nikolova. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl. Sci. 1(6), 607 (2019)

    Article  Google Scholar 

  8. Klem, M.T., Damon, A., Resnick, K., Gilmore, M., Young, Y.U., Idzerda, Trevor Douglas: Synthetic control over magnetic moment and exchange bias in all-oxide materials encapsulated within a spherical protein cage. J. Am. Chem. Soc. 129(1), 197–201 (2007)

    Article  Google Scholar 

  9. Wang, P., Wang, J., Fu, L., Wu, Y., Teunis van Ree: Metal oxides in fuel cells. In: Metal Oxides in Energy Technologies, pp. 17–47. Elsevier (2018)

  10. Soam, A., Kumar, R., Sahoo, P.K., Mahender, C., Kumar, B., Arya, N., Singh, M., Parida, S., Rajiv, O.: Dusane. Synthesis of nickel ferrite nanoparticles supported on graphene nanosheets as composite electrodes for high performance supercapacitor. ChemistrySelect 4, no. 34: 9952–9958. (2019)

  11. Agilandeswari, K., Rubankumar, A.: Synthesis, characterization, optical, and magnetic properties of Co3O4 nanoparticles by quick precipitation. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 46, no. 4: 502–506. (2016)

  12. Lakra, R., Kumar, R., Thatoi, D.N.: Prasanta Kumar Sahoo, and Ankur Soam. Synthesis and characterization of cobalt oxide (Co3O4) nanoparticles. Materials Today: Proceedings 41: 269–271. (2021)

  13. Tang, X., Zhu, S., Ning, J., Yang, X.: Min-Yi Hu, and Jiao-Jing Shao. Charge storage mechanisms of manganese dioxide-based supercapacitors: A review. New Carbon Mater. 36(4), 702–710 (2021)

    Article  Google Scholar 

  14. Kate, R.S., Suraj, A., Khalate, Ramesh, J.: Deokate. Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: A review. J. Alloys Compd. 734, 89–111 (2018)

    Article  Google Scholar 

  15. Pan, X., Chen, X., Li, Y.: Facile synthesis of Co3O4 nanosheets electrode with ultrahigh specific capacitance for electrochemical supercapacitors. Electrochim. Acta. 182, 1101–1106 (2015)

    Article  Google Scholar 

  16. Sarkar, S., Mukherjee, D., Harini, R., Nagaraju, G.: Ionic liquid-assisted synthesis of tri-functional ruthenium oxide nanoplatelets for electrochemical energy applications. J. Mater. Sci. 57(15), 7680–7693 (2022)

    Article  ADS  Google Scholar 

  17. Fukuhara, M., Kuroda, T., Hasegawa, F.: Amorphous titanium-oxide supercapacitors. Sci. Rep. 6(1), 35870 (2016)

    Article  ADS  Google Scholar 

  18. Mei, J., Liao, T., Ayoko, G.A.: Cobalt oxide-based nanoarchitectures for electrochemical energy applications. Prog. Mater. Sci. 103, 596–677 (2019)

    Article  Google Scholar 

  19. Waris, A., Din, M., Ali, A., Afridi, S., Baset, A., Khan, A.U., Muhammad Ali: Green Fabrication of Co and Co3O4 nanoparticles and their biomedical applications: A review. Open. life Sci. 16(1), 14–30 (2021)

    Article  Google Scholar 

  20. Babu, C., Rose, A.V., Avani, T.S., Xavier, M., Tomy, S., Shaji: Anila. Symmetric supercapacitor based on Co3O4 nanoparticles with an improved specific capacitance and energy density. J. Energy Storage. 80, 110382 (2024)

    Article  Google Scholar 

  21. Ravina, S., Kumar, S.Z., Hashmi, G., Srivastava, J., Singh, A.M., Quraishi, S., Dalela, F., Ahmed, Alvi, P.A.: Synthesis and investigations of structural, surface morphology, electrochemical, and electrical properties of NiFe2O4 nanoparticles for usage in supercapacitors. J. Mater. Sci.: Mater. Electron. 34(10), 868 (2023)

    Google Scholar 

  22. Srivastava, G., Kumar, S., Hashmi, S.Z., Ravina, A.M., Quraishi, S., Dalela, F., Ahmed, K., Kumari, B.H., Koo, Alvi, P.A.: Study of structural, surface morphology, Raman spectroscopy, and electrochemical properties of Bi1 + xFeO3 nanoparticles for usage in supercapacitors. Opt. Quant. Electron. 55(14), 1235 (2023)

    Article  Google Scholar 

  23. Ravina, S., Dalela, S., Kumar, B.L., Choudhary, Alvi, P.A.: Structural, optical and Raman studies of Co3O4 nano-particles. Materials Today: Proceedings 79: 165–168. (2023)

  24. Kumari, A., Kumari, K., Aljawfi, R.N., Alvi, P.A., Dalela, S., Ahmad, M.M., Chawla, A.K., Kumar, R.: Ankush Vij, and Shalendra Kumar. Role of La substitution on structural, optical, and multiferroic properties of BiFeO3 nanoparticles. Appl. Nanosci. 13(5), 3161–3180 (2023)

    Article  ADS  Google Scholar 

  25. Srivastava, G., Dalela, S., Kumar, S., Ravina, B.L., Choudhary: and P. A. Alvi. Structural and Raman studies of MnO2 and Mn2O3 nano-particles. Materials Today: Proceedings 79: 169–171. (2023)

  26. Haq, S., Rehman, W., Waseem, M., Elmnasri, K., Hedfi, A., Ben Ali, M., Mahmoudi, E., Rehman, M.U., Khan, B.: Variation in the crystallinity of cobalt oxide nanoparticles with increasing annealing temperature and pH. Digest J. Nanomaterials Biostructures (DJNB) 18, 3 (2023)

  27. Deng, S., Xiao, X., Chen, G., Wang, L., Wang, Y.: Cd doped porous Co3O4 nanosheets as electrode material for high performance supercapacitor application. Electrochim. Acta. 196, 316–327 (2016)

    Article  Google Scholar 

  28. Uma Sudharshini, A., Bououdina, M., Venkateshwarlu, M., Manoharan, C., Dhamodharan, P.: Low temperature solvothermal synthesis of pristine Co3O4 nanoparticles as potential supercapacitor. Surf. Interfaces. 19, 100535 (2020)

    Article  Google Scholar 

  29. Bahlawane, N., Rivera, E.F., Kohse-Höinghaus, K., Brechling, A., Kleineberg, U.: Characterization and tests of planar Co3O4 model catalysts prepared by chemical vapor deposition. Appl. Catal. B. 53(4), 245–255 (2004)

    Article  Google Scholar 

  30. Xu, J., Gao, L., Cao, J., Wang, W., Chen, Z.: Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material. Electrochim. Acta. 56(2), 732–736 (2010)

    Article  Google Scholar 

  31. Gao, Y., Chen, S., Cao, D., Wang, G., Yin, J.: Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J. Power Sources. 195(6), 1757–1760 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Ravina, P. A. Alvi, and Shalendra Kumar acknowledge to DST govt. of India for supporting the research in terms of a project funded to Banasthali Vidyapith under the CURIE scheme.

Author information

Authors and Affiliations

Authors

Contributions

The idea and design of the study were contributed to by all authors. The individuals who generated, collected, and analyzed the data were [R], [PAA], [SK], and [GS]. [R], [PAA], [SK] [MAA], and [GS] wrote the draft of the manuscript, and all other authors have given their inputs on the draft.

Corresponding author

Correspondence to P. A. Alvi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravina, Srivastava, G., Dalela, S. et al. Study of structural, optical, surface and electrochemical properties of Co3O4 nanoparticles for energy storage applications. Interactions 245, 85 (2024). https://doi.org/10.1007/s10751-024-01932-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-024-01932-y

Keywords

Navigation