Skip to main content
Log in

Structural and electrochemical characterization of tetragonal copper ferrite nanoparticles

  • Conference Proceeding
  • Published:
Interactions Aims and scope Submit manuscript

Abstract

Tetragonal CuFe2O4 is prepared using solid-state techniques assisted by a low-energy ball milling procedure, starting from cuprous oxide (CuO) and hematite (α-Fe2O3). The crystalline material was studied by Powder XRD analysis, ATR-FTIR, and room temperature Mössbauer spectroscopy showed that tetragonal CuFe2O4 is an inverse spinel. The formation of CuFe2O4 was favoured by milling. FESEM indicates the occurrence a distribution of the particles of irregular grain agglomeration. In the EDS scanning of the tetragonal CuFe2O4 pure samples, the Cu and Fe are homogeneously dispersed, and the Fe/Cu proportion is close to 2. Cyclic voltammetry studies were conducted using the voltammetry of immobilised microparticles technique, with platinum as a counter electrode, Ag/AgCl as a reference, and CuFe2O4 NPs over carbon paste as the working electrode. Pure copper ferrites exhibit two anodic peaks and two cathodic peaks in an acidic solution. A capacitor's behaviour is exhibited in alkaline electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Balagurov, A.M., Bobrikov, I.A.M., Pomjakushin, VYu., Sheptyakov, D.V., Yushankhai, VYu.: Interplay between structural and magnetic phase transitions in copper ferrite studied with high-resolution neutron diffraction. J. Magn. Magn. Mater. 374, 591–599 (2015)

    Article  CAS  ADS  Google Scholar 

  2. Rocha, A.K.S., Magnago, L.B., Pegoretti, V.C.B., de Freitas, M.B.J.G., Lelis, Fabris, J. D., Porto, A.O.: Copper local structure in spinel ferrites determined by x-ray absorption and Mössbauer spectroscopy and their catalytic performance. Mater. Res. Bull. 109, 117–123 (2019)

    Article  CAS  Google Scholar 

  3. Rosa, J.C., Rubí, M.S.: Influence of the synthesis route in obtaining the cubic or tetragonal copper ferrite phases. Inorg. Chem. 59(13), 8775–8788 (2020)

    Article  Google Scholar 

  4. Tasca, J.E., Quincoces, C.E., Lavat, A., Alvarez, A.M., Gloria González, M.: Preparation and characterization of CuFe2O4 bulk catalysts. Ceram. Internat. 37, 803–812 (2011)

    Article  CAS  Google Scholar 

  5. Rocha, A.K.S., Magnago, L.B., Santos, J.J., Leal, V.M., Marins, A.A.L., Pegoretti, V.C.B., de Ferreira, S.A.D., Lelis, M.F.F., Freitas, M.B.J.G.: Copper ferrite synthesis from spent Li-ion batteries for multifunctional application as catalyst in photo Fenton process and as electrochemical pseudocapacitor. Mater. Res. Bull. 113, 231–240 (2019)

    Article  CAS  Google Scholar 

  6. Covaliu, I.C., Neamtu, J., Georgescu, G., Malaeru, T., Cristea, C., Jitaru, I.: Synthesis and characterization of ferrites (Fe3O4/CuFe2O4)-calcium alginate hybrids for magnetic resonance imaging. Dig. J. Nanomater. Biostruct. 6, 245–252 (2015)

    Google Scholar 

  7. Yang, H., Yan, J., Lu, Z., Cheng, X., Tang, Y.: Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation. J. Alloys Compd. 476, 715–719 (2009)

    Article  CAS  Google Scholar 

  8. Fu, Y., Chen, Q., He, M., Wan, Y., Sun, X., Xia, H., Wang, X.: Copper ferrite-graphene hybrid: a multifunctional hetero-architecture for photocatalysis and energy storage. Ind. Eng. Chem. Res. 51, 11700–11709 (2012)

    Article  CAS  Google Scholar 

  9. Kumari, S., Manglam, M.K., Pradhan, L.K., Kumar, L., Borah, J.P., Kar, M.: Modification in crystal structure of copper ferrite fiber by annealing and its hyperthermia application. Appl. Phys. A 127, 273 (2021). https://doi.org/10.1007/s00339-021-04429-5

    Article  CAS  ADS  Google Scholar 

  10. Roy, S., Ghose, J.: Superparamagnetic nanocrystalline CuFe2O4. J. Appl. Phys. 87(9), 6226 (2000)

    Article  CAS  ADS  Google Scholar 

  11. Stewart, S.J., Tueros, M.J., Cernicchiaro, G., Scorzelli, R.B.: Magnetic size growth in nanocrystalline copper ferrite. Solid State Commun. 129, 347–351 (2004)

    Article  CAS  ADS  Google Scholar 

  12. Stewart, S.J., Mercader, R.C., Punte, G., Desimoni, J., Cernicchiaro, G., Scorzelli, R.B.: Shifting the superparamagnetic limit of nanosized copper iron spinel. Hyperfine Interact. 156, 89–95 (2004)

    Article  ADS  Google Scholar 

  13. Vittorio Berbenni, V., Marini, A., Milanese, C., Bruni, G.: Solid state synthesis of CuFe2O4 from Cu(OH)2 ∙CuCO3-4FeC2O4 ∙2H2O mixtures: mechanism of reaction and thermal characterization of CuFe2O4. J. Therm. Anal. Calorim. 99, 437–442 (2010)

    Article  Google Scholar 

  14. Goya, G.F., Rechenberg, H.R., Jiang, J.Z.: Structural and magnetic properties of ball milled copper ferrite. J. Appl. Phys. 84, 1101–1108 (1998)

    Article  CAS  ADS  Google Scholar 

  15. Marinca, T.F., Chicinas, I., Isnard, O.: Structural and magnetic properties of the copper ferrite obtained by reactive milling and heat treatment. Ceram. Int. 39(4), 4179–4186 (2013)

    Article  CAS  Google Scholar 

  16. Salavati-Niasari, M., Mahmoudi, T., Sabet, M., Hosseinpour-Mashkani, S.M., Soofivand, F., Tavakoli, F.: Synthesis and characterization of copper ferrite nanocrystals via coprecipitation. J. Cluster Sci. 23, 1003–1010 (2012)

    Article  CAS  Google Scholar 

  17. Kanagaraj, M., Sathishkumar, P., Selvan, G.K., Kokila, P., Arumugam, S.: Structural and magnetic properties of CuFe2O4 as-Prepared and thermally treated spinel nanoferrites. Indian J. Pure Appl. Phys. 52, 124–130 (2014)

    CAS  Google Scholar 

  18. Lv, W., Liu, B., Luo, Z., Ren, X., Zhang, P.: XRD studies on the nanosized copper ferrite powders synthesized by sonochemical method. J. Alloys Compd. 2008(465), 261–264 (2008)

    Article  Google Scholar 

  19. Mir, N., Salavati-Niasari, M., Davar, F.: Preparation of ZnO nanoflowers and zn glycerolate nanoplates using inorganic precursors via a convenient rout and application in dye sensitized solar cells. Chem. Eng. J. 181–182, 779–789 (2012)

    Article  Google Scholar 

  20. Kalam, A., Al-Sehemi, A.G., Assiri, M., Du, G., Ahmad, T., Ahmad, I., Pannipara, M.: Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2 /visible light. Results Phys. 8, 1046–1053 (2018)

    Article  ADS  Google Scholar 

  21. Kurian, J., Mathew, M.J.: Structural, optical and magnetic studies of CuFe2O4, MgFe2O4 and ZnFe2O4 nanoparticles prepared by hydrothermal/solvothermal method. J. Magn. Magn. Mater. 451, 121–130 (2018)

    Article  CAS  ADS  Google Scholar 

  22. Zakiyah, L.B., Saion, E., Al-Hada, N.M., Gharibshahi, E., Salem, A., Soltani, N., Gene, S.: Up-scalable synthesis of size-controlled copper ferrite nanocrystals by thermal treatment method. Mater. Sci. Semicond. Process. 40, 564–569 (2015)

    Article  CAS  Google Scholar 

  23. López-Ramón, M.V., Álvarez, M.A., Moreno-Castilla, C., Fontecha-Cámara, M.A., Yebra-Rodríguez, Á., Bailón-García, E.: Effect of calcination temperature of a copper ferrite synthesized by a sol-gel method on its structural characteristics and performance as Fenton catalyst to remove gallic acid from water. J. Colloid Interface Sci. 511, 193–202 (2018)

    Article  PubMed  ADS  Google Scholar 

  24. Zhuravlev, V.A., Minin, R.V., Itin, V.I., Lilenko, I.Y.: Structural parameters and magnetic properties of copper ferrite nanopowders obtained by the sol-gel combustion. J. Alloys Compd. 692, 705–712 (2017)

    Article  CAS  Google Scholar 

  25. Satheeshkumar, M.K., Ranjith Kumar, E., Srinivas, C., Prasad, G., Meena, S.S., Pradeep, I., Suriyanarayanan, N., Sastry, D.L.: Structural and magnetic properties of CuFe2O4 ferrite nanoparticles synthesized by cow urine assisted combustion method. J. Magn. Magn. Mater. 484, 120–125 (2017)

    Article  ADS  Google Scholar 

  26. Satheeshkumar, M.K., Ranjith Kumar, E., Srinivas, C., Suriyanarayanan, N., Deepty, M., Prajapat, C.L., Rao, T.V.C., Sastry, D.L.: Study of structural, morphological and magnetic properties of ag substituted cobalt ferrite nanoparticles prepared by honey assisted combustion method and evaluation of their antibacterial activity. J. Magn. Magn. Mater. 469, 691–697 (2019)

    Article  CAS  ADS  Google Scholar 

  27. Zinatloo-Ajabshir, S., Morassaei, M.S., Salavati-Niasari, M.: Facile fabrication of Dy2Sn2O7-SnO2 nanocomposites as an effective photocatalyst for degradation and removal of organic contaminants. J. Colloid Interface Sci. 497, 298–308 (2017)

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Masunga, N., Mmelesi, O.K., Kefeni, K.K., Mamba, B.B.: Recent advances in copper ferrite nanoparticles and nanocomposites synthesis, magnetic properties and application in water treatment: review. J. Environ. Chem. Eng. 7, 103179 (2019). https://doi.org/10.1016/j.jece.2019.103179

    Article  CAS  Google Scholar 

  29. Calvo-de la Rosa, J., Segarra, M.: Optimization of the synthesis of copper ferrite nanoparticles by a polymer-assisted sol−gel method. ACS Omega 4, 18289–18298 (2019). https://doi.org/10.1021/acsomega.9b02295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Prabhu, D., Narayanasamy, A., Shinoda, K., Jeyadeven, B., Greneche, J.M., Chattopadhyay, K.: Grain size effect on the phase transformation temperature of nanostructured CuFe2O4. J. Appl. Phys. 109, 013532 (2011). https://doi.org/10.1063/1.3493244

    Article  CAS  ADS  Google Scholar 

  31. Palacio Gómez, C.A., Barrero Meneses, C.A., Matute, A.: Structural parameters and cation distributions in solid state synthesized Ni-Zn ferrites. Mater. Sci. Eng. B 236–237(2018), 48–55 (2018)

    Article  Google Scholar 

  32. Palacio Gómez, C.A., Barrero Meneses, C.A., Jaén, J.A.: Raman, infrared and mössbauer spectroscopic studies of solid-state synthesized ni-zn ferrites. J. Magn. Magn. Mater. 505, 166710 (2020). https://doi.org/10.1016/j.jmmm.2020.166710

    Article  CAS  Google Scholar 

  33. Larson, A.C., Von Dreele, R.B.: General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86–748 (2004)

  34. Naseri, M.G., Saion, E.B., Ahangar, H.A., Shaari, A.H.: Fabrication, characterization, and magnetic properties of copper ferrite nanoparticles prepared by a simple, thermal-treatment method. Mater. Res. Bull. 48(4), 1439–1446 (2013)

    Article  CAS  Google Scholar 

  35. El-Masry, M.M., Ramadan, R.: The effect of CoFe2O4, CuFe2O4 and Cu/CoFe2O4 nanoparticles on the optical properties and piezoelectric response of the PVDF polymer. Appl. Phys. A 128(2), 1–13 (2022)

    Article  Google Scholar 

  36. Al-Kadhi, N.S., Al-Senani, G.M., Almufarij, R.S., Abd-Elkader, O.H., Deraz, N.M.: Green synthesis of nanomagnetic copper and cobalt ferrites using corchorus olitorius. Crystals 13(5), 758 (2023). https://doi.org/10.3390/cryst13050758

    Article  CAS  Google Scholar 

  37. Greenwood, N.N., Gibb, T.C.: Mössbauer spectroscopy. Chapman and Hall, London (1971). pp 241

    Book  Google Scholar 

  38. Kohout, J., Kmječ, T., Kučera, M., Závěta, K.: CuFe2O4 thin films: hyperfine interactions of 57Fe nuclei and distribution cations. Conf. Int. Conf. Appl. Phys. Condens. Matter 22, 279–283 (2016)

    Google Scholar 

  39. Alonso, A., Tascón, M., Vázquez, M., Sánchez, P.: Electrochemical study of copper and iron compounds in the solid state by using voltammetry of immobilized microparticles: application to copper ferrite characterization. J. Electroanal. Chem. 566(2), 433–441 (2004)

    Article  Google Scholar 

  40. Mouhandess, M.T., Chassagneux, F., Vittori, O., Accary, A., Reeves, R.: Some theoretical aspects of electrodissolution of iron oxide (α-Fe2O3) in carbon paste electrodes with acidic binder. J. Electroanal. Chem. Interf. Electrochem. 181(1–2), 93–105 (1984)

    Article  CAS  Google Scholar 

  41. Barrado, E., Prieto, F., Vega, M., Pardo, R., Medina, J.: Characterization and electrochemical behavior of a copper ferrite obtained by in situ precipitation from aqueous solutions. Electroanalysis 12(5), 383–389 (2000)

    Article  CAS  Google Scholar 

  42. Amulya, M.S., Nagaswarupa, H., Kumar, M., Ravikumar, C., Kusuma, K., Prashantha, S.: Evaluation of bifunctional applications of CuFe2O4 nanoparticles synthesized by a sonochemical method. J. Phys. Chem. Solids 148, 109756 (2021). https://doi.org/10.1016/j.jpcs.2020.109756

    Article  CAS  Google Scholar 

  43. Ng, E.: Caracterización electroquímica, morfológica y estructural de ferritas de cobre sintetizadas por método sol-gel. Thesis. Universidad de Panamá (2021)

  44. Saikova, S., Pavlikov, A., Karpov, D., Samoilo, A., Kirik, S., Volochaev, M., Trofimova, T., Velikanov, D., Kuklin, A.: Copper ferrite nanoparticles synthesized using anion-exchange resin: influence of synthesis parameters on the cubic phase stability. Materials 16(6), 2318 (2023). https://doi.org/10.3390/ma16062318

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  45. Zhang, W., Quan, B., Lee, C., Kang, Y.C., Li, X., Choi, E., Diao, G., Piao, Y.: One-step facile solvothermal synthesis of copper ferrite-graphene composite as a high-performance supercapacitor material. ACS Appl. Mater. 7(4), 2404–2414 (2015)

    Article  CAS  Google Scholar 

  46. Encinas, P., Lorenzo, L.N.P., Tascón, M., Vázquez, M., Sánchez-Batanero, P.: Electrochemical study of iron(II) and iron(III) compound mixtures in the solid state. Application to magnetite characterization. J. Electroanal. Chem. 371(1–2), 161–166 (1994)

    Article  CAS  Google Scholar 

  47. Sahu, V., Shekhar, S., Ahuja, P., Gupta, G., Singh, S.K., Sharma, R.K., Singh, G.: Synthesis of hydrophilic carbon black; role of hydrophilicity in maintaining the hydration level and protonic conduction. RSC Adv. 3(12), 3917–3924 (2013)

    Article  CAS  ADS  Google Scholar 

  48. Wu, Q., He, T., Zhang, Y., Zhang, J., Wang, Z., Liu, Y., Zhao, L., Wu, Y., Ran, F.: Cyclic stability of supercapacitors: materials, energy storage mechanism, test methods, and device. J. Mater. Chem. A 9(43), 24094–24147 (2021)

    Article  CAS  Google Scholar 

  49. Liang, W., Yang, W., Sakib, S., Zhitomirsky, I.: Magnetic CuFe2O4 nanoparticles with pseudocapacitive properties for electrical energy storage. Molecules 27(16), 5313 (2022). https://doi.org/10.3390/molecules27165313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Rolando A Gittens of INDICASAT for the ATR-FTIR and SEM measurements. This work has been partly supported by SENACYT (Grant 050-2021-4-PFID-INF2020-13).

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

JAJ: Conceptualization, Formal analysis, Investigation, Resources, Writing - original draft, Writing - review & editing, Supervision. MC: Methodology, Investigation, Data curation. EC: Formal analysis, Investigation, Resources, Data curation, Writing - review & editing. AM: Formal analysis, Investigation. MD: Methodology, Investigation, Data curation. GC: Formal analysis, Investigation, Resources, Data curation, Writing - review & editing.

Corresponding author

Correspondence to Juan Antonio Jaén.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaén, J.A., Coronado, M., Chung, E. et al. Structural and electrochemical characterization of tetragonal copper ferrite nanoparticles. Hyperfine Interact 245, 4 (2024). https://doi.org/10.1007/s10751-024-01848-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-024-01848-7

Keywords

Navigation