Skip to main content
Log in

Challenges of fitting a Nitrided austenitic stainless steel Mössbauer Spectrum

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Nitriding of austenitic stainless steel (ASS) causes changes to its surface, and it is widely used in technological applications. The extreme sensitivity of the formed layer not only to the nitriding process but also to its parameters (or nitriding conditions) leads to an infinite number of samples, making it difficult to compare it with results from different authors. The nitrided layer has a gradient of the nitrogen content profile. This, added to the presence of non-stoichiometric phases and the presence of induced residual stress, forms a very heterogenous probed area. Another issue is that despite being relatively well studied, the crystallographic structure of the expanded austenite, which is the main structure formed, is not well established. Considering this, many challenges remain concerning the characterization of the microstructure of the formed layer, mainly because of the limitations of the local structure characterization tools, whose results can be extremely difficult to interpret. Moreover, recent results suggest that the surface proximity may substantially affect the structure in this outermost region, and therefore even a few tenths of a micron must be carefully characterized, which increases the complexity of this system. In this context, Mössbauer spectroscopy (MS) is an interesting exploratory technique, which, if correlated with other techniques, can support this challenging task. However, regardless of the intrinsic complexity of this spectroscopy, interpreting the Mössbauer spectrum is not straightforward, requiring not only a solid understanding of the nitrided ASS system, but also a careful correlation with the results of other techniques. In this study, these points are cautiously detailed and the implications in the MS analyses are widely discussed. Finally, some ways of improving the analyses are outlined and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dong, H.: S-phase surface engineering of Fe-Cr. Co-Cr and Ni-Cr alloys. Int. Mater. Rev. 55, 65–98 (2010). https://doi.org/10.1179/095066009X12572530170589

    Article  Google Scholar 

  2. Olzon-Dionysio, D.: Crystallographic, Magnetic and 57Fe Hyperfine Structural Features of Nitrided Austenitic Stainless Steel, (2020)

  3. Olzon-Dionysio, D., Fabris, J.D., Martins, M.D., Tavares, M.A.B., Ardisson, J.D.: Magnetic and 57Fe hyperfine structural features of nitrided austenitic stainless steel. Surf. Coatings Technol. 125544 (2020). https://doi.org/10.1016/j.surfcoat.2020.125544

  4. Olzon-Dionysio, M., Olzon-Dionysio, D., Campos, M., Shigeyosi, W.T., de Souza, S.D., de Souza, S.: Corrosion resistance of AISI 316L plasma nitrided at different temperatures and times. Hyperfine Interact. 240, 26 (2019). https://doi.org/10.1007/s10751-019-1563-1

    Article  ADS  Google Scholar 

  5. Czerwiec, T., Andrieux, A., Marcos, G., Michel, H., Bauer, P.: Is “expanded austenite” really a solid solution? Mössbauer observation of an annealed AISI 316L nitrided sample. J. Alloys Compd. 811, 151972 (2019). https://doi.org/10.1016/j.jallcom.2019.151972

    Article  Google Scholar 

  6. Schaaf, P., Landry, F., Han, M., Lieb, K.P.: Mössbauer investigation of laser nitrided stainless steel and annealing treatments of laser nitrided iron. Hyperfine Interact. 126, 211–214 (2000). https://doi.org/10.1023/A:1012625702719

    Article  ADS  Google Scholar 

  7. Öztürk, O., Okur, S., Riviere, J.P.: Structural and magnetic characterization of plasma ion nitrided layer on 316L stainless steel alloy. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 267, 1540–1545 (2009). https://doi.org/10.1016/j.nimb.2009.01.076

    Article  ADS  Google Scholar 

  8. Nagy, D.L.: Mossbauer effect: a dual method for myriad applications. Hyperfine Interact. 182, 5–13 (2008). https://doi.org/10.1007/s10751-008-9726-5

    Article  ADS  Google Scholar 

  9. Parascandola, S., Mo, W., Williamson, D.L.: The nitrogen transport in austenitic stainless steel at moderate temperatures. Appl. Phys. Lett. 76, 2194–2196 (2000)

    Article  ADS  Google Scholar 

  10. Riviere, J.P., Cahoreau, M., Meheust, P.: Chemical bonding of nitrogen in low energy high flux implanted austenitic stainless steel. J. Appl. Phys. 91, 6361–6366 (2002). https://doi.org/10.1063/1.1469691

    Article  ADS  Google Scholar 

  11. Manova, D., Mändl, S.: Nitrogen transport in expanded austenite formed in stainless steels and CoCr Base alloys. Mater. Perform. Charact. 6, 20160081 (2017). https://doi.org/10.1520/MPC20160081

    Article  Google Scholar 

  12. Kovács, D., Quintana, I., Dobránszky, J.: Effects of different variants of plasma Nitriding on the properties of the Nitrided layer. J. Mater. Eng. Perform. 28, 5485–5493 (2019). https://doi.org/10.1007/s11665-019-04292-9

    Article  Google Scholar 

  13. De Las Heras, E., Ybarra, G., Lamas, D., Cabo, A., Dalibon, E.L., Brühl, S.P.: Plasma nitriding of 316L stainless steel in two different N2-H2 atmospheres - influence on microstructure and corrosion resistance. Surf. Coatings Technol. 313, 47–54 (2017). https://doi.org/10.1016/j.surfcoat.2017.01.037

    Article  Google Scholar 

  14. Berg, M., Budtz-Jørgensen, C.V., Reitz, H., Schweitz, K.O., Chevallier, J., Kringhøj, P., Bøttiger, J.: On plasma nitriding of steels. Surf. Coatings Technol. 124, 25–31 (2000). https://doi.org/10.1016/S0257-8972(99)00472-7

    Article  Google Scholar 

  15. Abrasonis, G., Rivière, J.P., Templier, C., Pranevičius, L., Barradas, N.P.: Flux effect on the ion-beam nitriding of austenitic stainless-steel AISI 304L. J. Appl. Phys. 97, 124906 (2005). https://doi.org/10.1063/1.1929093

    Article  ADS  Google Scholar 

  16. Olzon-Dionysio, M., Campos, M., Kapp, M., de Souza, S.D., de Souza, S.D.: Influences of plasma nitriding edge effect on properties of 316L stainless steel. Surf. Coatings Technol. 204, 3623–3628 (2010). https://doi.org/10.1016/j.surfcoat.2010.04.034

    Article  Google Scholar 

  17. M. Campos, de Souza S, J. P. Davim, S. D. de Souza, M.O.-D.: Influence of the Gas Pressure of Plasma Nitriding on the Structural , Mechanical and. Mater. Res. 22, (2019)

  18. Galdikas, A., Moskalioviene, T.: Stress induced nitrogen diffusion during nitriding of austenitic stainless steel. Comput. Mater. Sci. 50, 796–799 (2010). https://doi.org/10.1016/j.commatsci.2010.10.018

    Article  Google Scholar 

  19. Martinavičius, A., Abrasonis, G., Möller, W., Templier, C., Rivìre, J.P., Decĺmy, A., Chumlyakov, Y.: Anisotropic ion-enhanced diffusion during ion nitriding of single crystalline austenitic stainless steel. J. Appl. Phys. 105, 1–7 (2009). https://doi.org/10.1063/1.3120912

    Article  Google Scholar 

  20. Fewell, M., Mitchell, D.R., Priest, J., Short, K., Collins, G.: The nature of expanded austenite. Surf. Coatings Technol. 131, 300–306 (2000). https://doi.org/10.1016/S0257-8972(00)00804-5

    Article  Google Scholar 

  21. Shabashov, V.A., Gavrilov, N.V., Kozlov, K.A., Makarov, A.V., Titova, S.G., Voronin, V.I.: Structure of the surface layers of metastable austenitic stainless steel Nitrided in Electron beam plasma. Phys. Met. Metallogr. 119, 755–763 (2018). https://doi.org/10.1134/S0031918X18080124

    Article  ADS  Google Scholar 

  22. Brink, B.K., Ståhl, K., Christiansen, T.L., Frandsen, C., Hansen, M.F., Somers, M.A.J.: Composition-dependent variation of magnetic properties and interstitial ordering in homogeneous expanded austenite. Acta Mater. 106, 32–39 (2016). https://doi.org/10.1016/j.actamat.2015.12.043

    Article  ADS  Google Scholar 

  23. Öztürk, O., Williamson, D.L.: Phase and composition depth distribution analyses of low energy, high flux N implanted stainless steel. J. Appl. Phys. 77, 3839–3850 (1995). https://doi.org/10.1063/1.358561

    Article  ADS  Google Scholar 

  24. Blawert, C., Kalvelage, H., Mordike, B.L., Collins, G.A., Short, K.T., Jirásková, Y., Schneeweiss, O.: Nitrogen and carbon expanded austenite produced by PI3. Surf. Coatings Technol. 136, 181–187 (2001). https://doi.org/10.1016/S0257-8972(00)01050-1

    Article  Google Scholar 

  25. Borgioli, F., Galvanetto, E., Bacci, T.: Low temperature nitriding of AISI 300 and 200 series austenitic stainless steels. Vacuum. 127, 51–60 (2016). https://doi.org/10.1016/j.vacuum.2016.02.009

    Article  ADS  Google Scholar 

  26. Xiaolei, X.U., Wang, L., Qiang, J., Hei, Z.: Study of microstructure of low-temperature plasma-nitrided AISI 304 stainless steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 31, 1193–1199 (2000). https://doi.org/10.1007/s11661-000-0115-1

    Article  Google Scholar 

  27. Manova, D., Díaz, C., Pichon, L., Abrasonis, G., Mändl, S.: Comparability and accuracy of nitrogen depth profiling in nitrided austenitic stainless steel. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 349, 106–113 (2015). https://doi.org/10.1016/j.nimb.2015.02.050

    Article  ADS  Google Scholar 

  28. Ujihira, Y.: Analytical applications of conversion electron mssbauer spectrometry (CEMS). Rev. Anal. Chem. 8, 125–177 (1985). https://doi.org/10.1515/REVAC.1985.8.1-2.125

    Article  Google Scholar 

  29. Nadutov, V.M.: Mössbauer analysis of the effect of substitutional atoms on the electronic charge distribution in nitrogen and carbon Austenites. Mater. Sci. Eng. A. 254, 234–241 (1998). https://doi.org/10.1016/S0921-5093(98)00663-7

    Article  Google Scholar 

  30. Cordier-Robert, C., Bourdeau, L., Magnin, T., Foct, J.: Nitrogen implantation of stainless steel studied by M??Ssbauer spectroscopy and X-ray diffraction. J. Mater. Sci. Lett. 13, 352–354 (1994). https://doi.org/10.1007/BF00420796

    Article  Google Scholar 

  31. Boerma, D.O., Grachev, S.Y., Borsa, D.M., Miranda, R., Gallego, J.M.: Relating surface structure and growth mode of gamma ’ Fe4N. Surf. Rev. Lett. 10, 405–411 (2003)

    Article  ADS  Google Scholar 

  32. Oda, K., Umezu, K., Ino, H.: Interaction and arrangement of nitrogen atoms in FCC γ-iron. J. Phys. Condens. Matter. 2, 10147–10158 (1990). https://doi.org/10.1088/0953-8984/2/50/018

  33. Borsa, D.M., Boerma, D.O.: Phase identification of iron nitrides and iron oxy-nitrides with Mössbauer spectroscopy. Hyperfine Interact. 151–152, 31–48 (2003). https://doi.org/10.1023/B:HYPE.0000020403.64670.02

    Article  ADS  Google Scholar 

  34. Potapkin, V., Chumakov, A.I., Smirnov, G.V., Celse, J.P., Rüffer, R., McCammon, C., Dubrovinsky, L.: The 57 Fe synchrotron Mössbauer source at the ESRF. J. Synchrotron Radiat. 19, 559–569 (2012). https://doi.org/10.1107/S0909049512015579

    Article  Google Scholar 

  35. Mitsui, T., Masuda, R., Seto, M., Suharyadi, E., Mibu, K.: Grazing-incidence synchrotron-radiation 57Fe-Mössbauer spectroscopy using a nuclear Bragg monochromator and its application to the study of magnetic thin films. J. Synchrotron Radiat. 19, 198–204 (2012). https://doi.org/10.1107/S0909049511049958

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Olzon-Dionysio.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2021), 5-10 September 2021, Brasov, Romania

Edited by Victor Kuncser

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olzon-Dionysio, D., de Souza, S.D., de Souza, S. et al. Challenges of fitting a Nitrided austenitic stainless steel Mössbauer Spectrum. Hyperfine Interact 242, 25 (2021). https://doi.org/10.1007/s10751-021-01762-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-021-01762-2

Keywords

Navigation