Skip to main content
Log in

Galfenol/polyurethane Magnetoactive composites study by small angle scattering of resonant synchrotron radiation

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

We applied the small angle nuclear scattering of synchrotron radiation (SANRS) to investigate anisotropic Galfenol-polyurethane composite comprising Galfenol grains with Fe57 nuclei arranged in the parallel chains surrounded by the non-resonant polymer substance. We aimed to insight into the individual magnetic structure of the particles and particles/polymer interface using the ability to align the synchrotron radiation beam directly on the particle by reducing the analyzed volume and resonant thickness of the composite sample. The size of the studied particles was about 3–7 μm. The results of precise analysis of the rocking curves for electron and nuclear response let to support explanation of the functional composite properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferreira, A.B.L., Nóvoa, P.R.O., Marques, A.T.: Multifunctional material systems: a state-of-the-art review. Comp.Struct. 151, 3–35 (2016)

    Article  Google Scholar 

  2. Saber-Samandari, S., Khatibi, S.: The effect of interphase on the elastic Modulus of polymer based nanocomposites. Key Eng.Mater. 312, 199–204 (2006)

    Article  Google Scholar 

  3. Lipatov Yu.S. Interphase behavior in polymer. Kiyv. Naukova Dumka (in Russian) (1980)

  4. Petculescu G, Wu R, McQueeney R Magnetoelasticity of bcc Fe-Ga alloys. In: Buschow KHJ, editor Handbook of Magnetic Materials. 2012. V. 20

  5. Zholudev, S.I., Kiseleva, T.Y.: Mossbauer study of new functional metal/polymer nanocomposites with spatially oriented FeGa particles. Hyperfine Interact. 226, 375–382 (2014)

    Article  ADS  Google Scholar 

  6. Kiseleva, T., Zholudev, S., Novakova, A., Grigoreva, T.: Comp. Struct. 138, 12–16 (2016)

    Article  Google Scholar 

  7. Korzhenko, A., Tabellout, M., Emery, J.R.: Influence of a metal–polymer interfacial interaction on dielectric relaxation properties of polyurethane. Polymer. 40(26), 7187–7195 (1999)

    Article  Google Scholar 

  8. Wehlack, C., Possart, W.: Formation, structure and morphology of polyurethane–metal interphases IOP Conf. Ser.: Mater. Sci. Eng. 5, 012003 (2009)

    Google Scholar 

  9. Rohlsberger R. Nuclear Condensed Matter Physics with Synchrotron Radiation. Basic Principles, Methodology and Applications. Springer Tracts in Modern Physics. (2004) ISSN 0081-3869

  10. Shvyd’ko, V., Chumakov, A.I., Baron, A.Q.R., Gerdau, E., Rüffer, R., Bernhard, A., Metge, J.: Nuclear resonance small angle scattering of x-rays. Phys. Rev. B. 54, 14942 (1996)

    Article  ADS  Google Scholar 

  11. Kobayashi Y., Seto M., Kitao S., Haruki R. Nuclear resonant small-angle scattering of amorphous alloys. Photon Factory Activity Report NE-3/2001G267 (2002)

  12. Kobayashi Y. Seto M, Kitao S. et.al. Nuclear Resonant Small-Angle Scattering of Nanoparticles/ Photon Factory Activity Report # 2005G088 (2007)

  13. Sato M., Ishii Y., Nakae H. Magnetic domain structures and domain walls in iron fine particles J. of Appl. Phys. 53, 6331 (1982)

  14. Ruffer R. and Chumakov A. Nuclear resonance beamline at ESRF. Hyperfine Interact. 97/98, 589–604, (1996)

  15. Smirnov G.V. Nuclear resonant scattering of synchrotron radiation. Hyperfine Interact. 97/98, 551–588 (1996)

  16. Bouen D.K., Tanner B.K. High Resolution x-Ray Diffractometry and Topography, Nauka, St-Peterbrtg (2002)

  17. Kiseleva T., Zholudev S. Kabanov V., Baulin R., Levin E., Grigoreva T., Chumakov A., D. Bessas, Mechanosynthesized Particles of Galfenol Magnetostrictive Composition and Their Polyurethane-Bonded Magnetoactive Composites Probed by Synchrotron Mossbauer Spectroscopy, Mater.Today: Proc.12, 106–110, (2019)

  18. Novakova А.А, Agladze O.V., Gvozdover R.S., Kiseleva T. Yu., Tarasov B.P. Investigation of anisotropy effects in compact nanocrystalline iron. Surf. Investing., 12, 27–29 (2000)

  19. Matsnev, M.E., Rusakov, V.S.: SpectrRelax: an application for Mossbauer spectra modeling and fitting. AIP Conf. proc. 1489, 178–182 (2012)

    Article  ADS  Google Scholar 

  20. Masirllo, F., Cembali, G., Chumakov, A., Connell, S., Ferrero, C., Hartwig, J., Sergeev, I., Van Vaerenbergh, P.: Rocking curve measurements revisited. J. of Appl.Cryst. 47, 1304–1314 (2014)

    Article  Google Scholar 

  21. Hesse, J., Rubartsch, A.: Model independent evaluation of overlapped Mossbauer spectra. J.Phys. E7, 526–532 (1974)

    ADS  Google Scholar 

Download references

Acknowledgements

Authors thank dr. T. Grigoreva (Institute of solid-state chemistry and mechanochemistry SB RAS, Novosibirsk) for Galfenol particles synthesis. We thank ESRF stuff for possibility to provide excellent experimental conditions during MA-3721 proposal at the nuclear-resonance beamline ID18 of the ESRF. We also thank Moscow University Program of development for technical supporting of experiments on specimens preparing and pre-testing for precise measurements on synchrotron facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Kiseleva.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2021), 5-10 September 2021, Brasov, Romania.

Edited by: Victor Kuncser

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zholudev, S., Kiseleva, T., Chumakov, A. et al. Galfenol/polyurethane Magnetoactive composites study by small angle scattering of resonant synchrotron radiation. Hyperfine Interact 242, 43 (2021). https://doi.org/10.1007/s10751-021-01760-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-021-01760-4

Keywords

Navigation