Skip to main content
Log in

Electrical conductivity, DSC, XRD, and 7Li NMR studies of rotator crystals n-C21H43COOLi x K(1 − x) (0.33 ≤ x ≤ 0.50), n-C m H(2m + 1)COOLi, and n-C m H(2m + 1)COOK (m = 13, 15, 17, 19, and 21)

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry (DSC) thermograms, X-ray diffraction (XRD) analysis, electrical conductivity (σ), and 7Li NMR spectroscopy characterization of n-C m H(2m + 1)COOM solids (M = Li, Na, K; m = 13, 15, 17, 19, 21) and mixed crystals n-C21H43COOLi x K(1 − x) (0.25 ≤ x ≤ 0.75) was performed as a function of temperature. DSC thermograms of n-C m H(2m + 1)COOM revealed several solid-solid phase transitions with large entropy changes. Electrical conductivity studies established that n-C m H(2m + 1)COOLi crystals are poor electrical conductors. In contrast, n-C m H(2m + 1)COOK salts were found to have σ values of 10 − 7–10 − 8 S·cm − 1. Since the crystal structures and phase-transition temperatures of both n-C m H(2m + 1)COOLi and n-C m H(2m + 1)COOK crystals were similar, they were able to form mixed crystals with the structure n-C x H(2m + 1)COOLi x K(1 − x). DSC thermograms of the mixed crystals showed a small entropy change at the melting point (ΔS mp < 13 J K − 1 mol − 1), in addition, large ΔS values at the solid-solid phase transition temperature. The σ values obtained for mixed crystals were roughly one order of magnitude greater than those determined for n-C21H43COOK crystals. 7Li NMR spectra of the mixed crystals recorded at various temperatures suggested that the self-diffusion of Li +  ions was excited in the highest-temperature solid phase. Based on these results, we have classified these mixed crystals as rotator crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MacFarlane, D.R., Huang, J., Forsyth, M.: Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature 402, 792–794 (1999)

    Article  ADS  Google Scholar 

  2. Timmermans, J.: Plastic crystals: a historical review. J. Phys. Chem. Solids 18, 1–8 (1961)

    Article  ADS  Google Scholar 

  3. Moriya, K., Matsuo, T., Suga, H.: Thermodynamic properties of alkali and thallium nitrites: the ionic plastically crystalline state. Thermochim. Acta 132, 133–140 (1988)

    Article  Google Scholar 

  4. Moriya, K., Matsuo, T., Suga, H.: Calorimetric and dielectric studies of phase transitions in rubidium nitrite. Bull. Chem. Soc. Jpn. 61, 1911–1916 (1988)

    Article  Google Scholar 

  5. Moriya, K., Matsuo, T., Suga, H.: Phase transition and freezing of disordered ionic orientation in CsNO2 crystal. Chem. Phys. Lett. 82, 581–585 (1981)

    Article  ADS  Google Scholar 

  6. Moriya, K., Matsuo, T., Suga, H., Seki, S.: Calorimetric and dielectric studies of phase transition in TLNO2 crystal. Chem. Lett. 1977, 1427–1430 (1977)

    Article  Google Scholar 

  7. Moriya, K., Matsuo, T., Suga, H.: Phase transition and freezing of ionic disorder in CsNO2 and TINO2 crystals. J. Phys. Chem. Solids 44, 1103–1119 (1983)

    Article  ADS  Google Scholar 

  8. Furukawa, Y., Kiriyama, H.: Magnetic relaxation of thallium nuclei and ionic motion in solid thallium(1) nitrite. Chem. Phys. Lett. 93, 617–620 (1982)

    Article  ADS  Google Scholar 

  9. Furukawa, Y., Nagase, H., Ikeda, R., Nakamura, D.: Cationic self-diffusion in ionic plastic phases of thallium nitrite and nitrate and in thallium thiocyanate. Bull. Chem. Soc. Jpn. 64, 3105–3108 (1991)

    Article  Google Scholar 

  10. Kenmotsu, M., Honda, H., Ohki, H., et al.: Ionic dynamics in plastic crystal KNO2 studied by 39K and 15N NMR. Z. Naturforsch. 49a, 247–252 (1994)

    Google Scholar 

  11. Honda, H., Kenmotsu, M., Ohki, H., et al.: Dynamics of nitrite ions in ionic plastic crystal RbNO2 studied by nitrogen and rubidium NMR. Ber. Bunsenges. Phys. Chem. 99, 1009–1014 (1995)

    Google Scholar 

  12. Honda, H., Ishimaru, S., Onoda-Yamamuro, N., Ikeda, R.: Dynamics of nitrite ions in ionic plastic crystal TlNO2 studied by 15N and 205Tl NMR. Z. Naturforsch. 50a, 871–875 (1995)

    Google Scholar 

  13. Honda, H., Kenmotsu, M., Onoda-Yamamuro, N., et al.: 15N and 133Cs NMR studies on ionic dynamics in plastic crystal CsNO2. Z. Naturforsch. 51a, 761–768 (1996)

    Google Scholar 

  14. Honda, H., Onoda-Yamamuro, N., Ishimaru, S., Ikeda, R., Yamamuro, S., Matsuo, T.: Dielectric study on ionic orientational disorder in the low temperature phases of ionic plastic crystal KNO2. Ber. Bunsenges. Phys. Chem. 102, 148–151 (1998)

    Article  Google Scholar 

  15. Onoda-Yamamuro, N., Honda, H., Ikeda, R., Yamamuro, O., Matsuo, T., Oikawa, K., Izumi, F.: Neutron powder diffraction study of the low-temperature phases of KNO2. J. Phys. Condens. Matter 10, 3341–3351 (1998)

    Article  ADS  Google Scholar 

  16. Honda, H.: Ionic dynamics in new ionic plastic crystal NH4NO2. Z. Naturforsch. 62a, 633–638 (2007)

    Google Scholar 

  17. Honda, H., Ishimaru, S., Ikeda, R.: Ionic dynamics in LiNO2 studied by 7Li and 15N solid NMR. Z. Naturforsch. 54a, 519–523 (1999)

    Google Scholar 

  18. Sakiyama, M., Kimoto, A., Seki, S.: Heat capacities and volume thermal expansion of NaNO2 crystal. J. Phys. Soc. Jpn. 20, 2180–2184 (1965)

    Article  ADS  Google Scholar 

  19. Weiss, A.: Z. Naturforsch. 15a, 536 (1960)

    ADS  Google Scholar 

  20. Takagi, Y., Gesi, K.: Electrical properties of NaNO2 single crystal in the vicinity of the ferroelectric curie temperature. J. Phys. Soc. Jpn. 22, 979–986 (1967)

    Article  ADS  Google Scholar 

  21. Hatta, I.: Experimental study on dielectric relaxation in NaNO2. J. Phys. Soc. Jpn. 24, 1043–1053 (1968)

    Article  ADS  Google Scholar 

  22. Yamada, Y., Fujii, Y., Hatta, I.: Dielectric relaxation mechanism in NaNO2. J. Phys. Soc. Jpn. 24, 1053–1058 (1968)

    Article  ADS  Google Scholar 

  23. Ikeda, R., Mikami, M., Nakamura, D., Kubo, M.: Nuclear quadrupole resonance of nitrogen in sodium nitrite. J. Magn. Reson. 1, 211–220 (1969)

    Google Scholar 

  24. Yagi, T., Tatsuzaki, I., Todo, I.: Nuclear magnetic resonance study on 23Na in sodium nitrite in the vicinity of the phase transition temperatures. J. Phys. Soc. Jpn. 28, 321–326 (1970)

    Article  ADS  Google Scholar 

  25. Wyckoff, R.W.G.: Crystal Structures, chapter 14A, vol. 5, 2nd edn. Wiley Interscience, New York (1966)

    Google Scholar 

  26. Hendricks, S.B.: Z. Krist. 68, 189 (1928)

    Google Scholar 

  27. Busico, V., Cernicchiaro, P., Corradinl, P., Vacatello, M.: Polymorphism in anhydrous amphiphilic systems. Long-chain primary n-alkylammonium chlorides. J. Phys. Chem. 87, 1631–1635 (1983)

    Article  Google Scholar 

  28. Seliger, J., Zagar, V., Blinc, R., Arend, H., Chapuis, G.: 14N and 35Cl double resonance study of the phase transition in the intercalated bilayer compound C10H21NH3Cl. J. Chem. Phys. 78, 2661–2664 (1983)

    Article  ADS  Google Scholar 

  29. Fukada, S., Yamamoto, H., Ikeda, R., Nakamura, D.: Hydrogen-1 nuclear magnetic resonance, differential thermal analysis, X-ray powder diffraction and electrical conductivity studies on the motion of cations, including self-diffusion in crystals of propylammonium chloride and bromide as well as their n-deuterated analogues. J. Chem. Soc. Faraday Trans. 1(83), 3207–3222 (1987)

    Google Scholar 

  30. Seliger, J., Zagar, V., Blinc, R., Kind, R., Arend, H., Chapuis, G., Schenk, K.J., Milia, F.: 14N and 35Cl nuclear quadrupole double resonance study of the phase transitions in n-decylammoniumchloride and n-hexylammoniumchloride. Z. Phys. B 69, 379–384 (1987)

    Article  ADS  Google Scholar 

  31. Seliger, J., Zagar, V., Blinc, R., Kind, R., Arend, H., Milia, F.: 14N and 35Cl nuclear quadrupole double resonance study of the structural phase transitions in N-octylammoniumchloride. Z. Phys. B 67, 363–368 (1987)

    Article  ADS  Google Scholar 

  32. Iwai, S., Ikeda, R., Nakamura, D.: Proton nuclear magnetic resonance, differential scanning calorimetry, and electrical conductivity studies on the phase transitions of pentylammonium chloride and the cationic self-diffusion in its rotator phase. Can. J. Chem. 66, 1961–1969 (1988)

    Article  Google Scholar 

  33. Hattori, M., Fukada, S., Nakamura, D., Ikeda, R.: Studies of the anisotropic self-diffusion and reorientation of butylammonium cations in the rotator phase of butylammonium chloride using 1H magnetic resonance, electrical conductivity and thermal measurements. J. Chem. Soc. Faraday Trans. 86, 3777–3783 (1990)

    Article  Google Scholar 

  34. Iwai, S., Hattori, M., Nakamura, D., Ikeda, R.: Ionic dynamics in the rotator phase of n-alkylammonium chlorides (C6–C10), studied by proton nuclear magnetic resonance, electrical conductivity and thermal measurements. J. Chem. Soc. Faraday Trans. 89, 827–831 (1993)

    Article  Google Scholar 

  35. Reynhardt, E.C., Wozniak-Braszak, A.: Polymorphism and molecular motions in n-nonylammonium chloride. Chem. Phys. Lett. 215, 493–498 (1993)

    Article  ADS  Google Scholar 

  36. Hattori, M., Onoda, Y., Erata, T., Smith, M.E., Hattori, M., Ohki, H., Ikeda, R.: Ionic motion and disordered structure in the rotor phase of butylammonium chloride studied by temperature dependences of 35Cl and 2H NMR. Z. Naturforsch. 49a, 291–296 (1994)

    Google Scholar 

  37. Tanaka, S., Onoda-Yamamuro, N., Ishimaru, S., Ikeda, R.: Rotator Phase in dodecylammonium chloride studied by 1H and 2H solid NMR and thermal measurements. Bull. Chem. Soc. Jpn. 70, 2981–2986 (1997)

    Article  Google Scholar 

  38. Shimizu, T., Tanaka, S., Onoda-Yamamuro, N., Ishimaru, S., Ikeda, R.: New rotator phase revealed in di-n-alkylammonium bromides studied by solid-state NMR, powder XRD, electrical conductivity and thermal measurements. J. Chem. Soc. Faraday Trans. 93, 321–326 (1997)

    Article  Google Scholar 

  39. Fojud, Z., Boeffel, C., Szczesniak, E., Jurga, S.: 2H and 13C CPMAS NMR study of chain dynamics in n-dodecylammonium chloride. J. Mol. Struct. 555, 107–117 (2000)

    Article  ADS  Google Scholar 

  40. Yamakawa, H., Matsukawa, S., Kurosu, H., Kuroki, S., Ando, I.: Diffusional behavior of n alkanes in the rotator phase as studied by pulse field-gradient spin-echo 1H NMR method. J. Chem. Phys. 111, 7710–7715 (1999)

    Article  Google Scholar 

  41. Terreros, A., Galera-Gomez, P.A., Lopez-Cabarcos, E.: DSC and X-ray diffraction study of polymorphism in n-alkylammonium chlorides. J. Therm. Anal. Calorim. 61, 341–350 (2000)

    Article  Google Scholar 

  42. Ikeda, R.: Dynamic behavior of molecular ions in new mesophases between solid and liquid. Recent Res. Dev. Chem. Phys. 5, 257–301 (2004)

    Google Scholar 

  43. White, N.A.S., Ellis, H.A.: Room temperature structures and odd–even behaviour of a homologous series of anhydrous lithium n-alkanoates. J. Mol. Struct. 888, 386–390 (2008)

    Article  ADS  Google Scholar 

  44. White, N.A.S., Ellis, H.A.: Thermal behavior of even chain length lithium n-alkanoates. Mol. Cryst. Liq. Cryst. 501, 28–42 (2009)

    Article  Google Scholar 

  45. White, N.A.S., Ellis, H.A., Nelson, P.N., Maragh, P.T.: Thermal and odd–even behaviour in a homologous series of lithium n-alkanoates. J. Chem. Thermodyn. 43, 584–590 (2011)

    Article  Google Scholar 

  46. Broadhurst, M.G.: J. Res. Natl. Bur. Stand. A Phys. Chem. 66A, 241 (1962)

    Article  Google Scholar 

  47. Pink, D.A.: The even–odd effect in liquid crystals. A simple model. J. Chem. Phys. 63, 2533–2539 (1975)

    Article  ADS  Google Scholar 

  48. Honda, H.: Even–odd effect of 35Cl quadrupole coupling constants in solid n-alkylammonium chlorides (C5–C10). Z. Naturforsch. 58a, 623–630 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Honda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayasaki, T., Honda, H. & Hirakawa, S. Electrical conductivity, DSC, XRD, and 7Li NMR studies of rotator crystals n-C21H43COOLi x K(1 − x) (0.33 ≤ x ≤ 0.50), n-C m H(2m + 1)COOLi, and n-C m H(2m + 1)COOK (m = 13, 15, 17, 19, and 21). Hyperfine Interact 222, 27–42 (2013). https://doi.org/10.1007/s10751-012-0670-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-012-0670-z

Keywords

Navigation