Skip to main content
Log in

In-situ Mössbauer spectroscopy with MIMOS II

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The miniaturized Mössbauer spectrometer MIMOS II was developed for the exploration of planetary surfaces. Two MIMOS II instruments were successfully deployed on the martian surface as payload elements of the NASA Mars Exploration Rover (MER) mission and have returned data since landing in January 2004. Mössbauer spectroscopy has made significant contributions to the success of the MER mission, in particular identification of iron-bearing minerals formed through aqueous weathering processes. As a field-portable instrument and with backscattering geometry, MIMOS II provides an opportunity for non-destructive in-situ investigations for a range of applications. For example, the instrument has been used for analyses of archaeological artifacts, for air pollution studies and for in-field monitoring of green rust formation. A MER-type MIMOS II instrument is part of the payload of the Russian Phobos-Grunt mission, scheduled for launch in November 2011, with the aim of exploring the composition of the martian moon Phobos. An advanced version of the instrument, MIMOS IIA, that incorporates capability for elemental analyses, is currently under development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klingelhöfer, G., et al.: J. Geophys. Res. 108(E12) 8067 (2003)

    Article  Google Scholar 

  2. Squyres, S.W., et al.: J. Geophys. Res. 108(E12), 8062 (2003)

    Article  Google Scholar 

  3. Squyres, S.W., et al.: Science 305, 794–799 (2004)

    Article  ADS  Google Scholar 

  4. Morris, R.V., et al.: Science 305, 833–836 (2004)

    Article  ADS  Google Scholar 

  5. Haskin, L.A., et al.: Nature 436, 66–69 (2005). doi:10.1038/nature03640

    Article  ADS  Google Scholar 

  6. Squyres, S.W., et al.: J. Geophys. Res. Planet 111, E02S11 (2006)

    Article  ADS  Google Scholar 

  7. Morris, R.V., et al.: J. Geophys. Res. Planet 111, E02S13 (2006)

    Article  ADS  Google Scholar 

  8. Klingelhöfer, G., et al.: Hyperfine Interact. 166, 549–554 (2005)

    Article  ADS  Google Scholar 

  9. Morris, R.V., et al.: Science 329, 421–423 (2010)

    Article  ADS  Google Scholar 

  10. Squyres, S.W., et al.: Science 316, 738–742 (2007)

    Article  ADS  Google Scholar 

  11. Schröder, C., et al.: Lunar Planet. Sci. 39, 2153 (2008)

    ADS  Google Scholar 

  12. Schmidt, M.E., et al.: Earth Planet. Sci. Lett. 281, 258–266 (2009)

    Article  ADS  Google Scholar 

  13. Arvidson, R.E., et al.: J. Geophys. Res. Planet 115, E00F03 (2010)

    Article  ADS  Google Scholar 

  14. Christensen, P.R., et al.: J. Geophys. Res. 105(E4), 9623–9642 (2000)

    Article  ADS  Google Scholar 

  15. Klingelhöfer, G., et al.: Science, 306, 1740–1745 (2004)

    Article  ADS  Google Scholar 

  16. Morris, R.V., et al.: Earth Planet. Sci. Lett. 240, 168–178 (2005)

    Article  ADS  Google Scholar 

  17. McLennan, S., et al.: Earth Planet. Sci. Lett. 240, 95–121 (2005)

    Article  ADS  Google Scholar 

  18. Golden, D.C., et al.: Am. Mineral. 93, 1201–1214 (2008)

    Article  Google Scholar 

  19. Fleischer, I., et al.: J. Geophys. Res. Planet 115, E00F06 (2010)

    Article  ADS  Google Scholar 

  20. Morris, R.V., et al.: Earth Planet. Sci. Lett. 240, 168–178 (2005)

    Article  ADS  Google Scholar 

  21. Yen, A., et al.: Nature 436, 49–54 (2005)

    Article  ADS  Google Scholar 

  22. Squyres, S.W., et al.: J. Geophys. Res. Planet 111, E12S12 (2006)

    Article  ADS  Google Scholar 

  23. Squyres, S.W., et al.: Science 324, 1058–1061 (2009)

    Article  ADS  Google Scholar 

  24. Morris, R.V., et al.: J. Geophys. Res. Planet 111, E12S15 (2006)

    Article  ADS  Google Scholar 

  25. Fleischer, I., et al.: J. Geophys. Res. Planet 115, E00F05 (2010)

    Article  ADS  Google Scholar 

  26. Schröder, C., et al.: J. Geophys. Res. Planet 115, E00F09 (2010)

    Article  ADS  Google Scholar 

  27. Ashley, J.W., et al.: J. Geophys. Res. Planet 116, E00F20 (2011)

    Article  ADS  Google Scholar 

  28. Fleischer, I., et al.: Meteorit. Planet Sci. 46(1), 21–34 (2011)

    ADS  Google Scholar 

  29. Schröder, C., et al.: J. Geophys. Res. Planet 113, E06S22 (2008)

    Article  ADS  Google Scholar 

  30. Wray, J.J., et al.: Geophys. Res. Lett. 36, L21201 (2009)

    Article  ADS  Google Scholar 

  31. Fleischer, I., et al.: J. Phys.: Conf. Ser. 217, 012062 (2010)

    Article  ADS  Google Scholar 

  32. Klingelhöfer, G., et al.: Lunar Planet. Sci. 41, 2736 (2010)

    Google Scholar 

  33. Rull, F., et al.: Lunar Planet. Sci. 39, 1616 (2008)

    ADS  Google Scholar 

  34. Blake, D., et al.: Lunar Planet. Sci. 40, 1484 (2009)

    ADS  Google Scholar 

  35. Fernandez-Remolar, C., et al.: Earth Planet Sci. Lett. 240, 149–167 (2005)

    Article  ADS  Google Scholar 

  36. Rull, F., et al.: EPSC Abs. 5, EPSC2010-845 (2010)

    Google Scholar 

  37. Martinez-Frias, J., et al.: Earth Planets Space 56, v–viii (2004)

    Google Scholar 

  38. de Souza, P.A., et al.: Hyperfine Interact. 151/152, 125–130 (2003)

    Article  ADS  Google Scholar 

  39. Klingelhöfer, G., et al.: Hyperfine Interact. C5, 423–426 (2002)

    Article  Google Scholar 

  40. Klingelhöfer, G., et al.: Hyperfine Interact. 144/145, 371–379 (2002)

    Article  Google Scholar 

  41. de Souza, P.A.: Dissertation, University of Mainz, Germany (2004)

  42. de Souza, P.A., et al.: J. Radioanal. Nucl. Chem. 246(1), 85–89 (2000)

    Article  Google Scholar 

  43. Feder, F., et al.: Geochim. Cosmochim. Acta 69, 4463–4483 (2005)

    Article  ADS  Google Scholar 

  44. Rodionov, D., et al.: Hyperfine Interact. 167(1) 869–873 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  45. Rodionov, D., et al.: Sol. Syst. Res. 44(5), 362–370 (2010)

    Article  ADS  Google Scholar 

  46. Blumers, M., et al.: Nucl. Instrum. Methods A 624(2), 277–281 (2010)

    Article  ADS  Google Scholar 

  47. Klingelhöfer, G., et al.: Lunar Planet. Sci. 42, 2810 (2011)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Iris Fleischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleischer, I., Klingelhöfer, G., Morris, R.V. et al. In-situ Mössbauer spectroscopy with MIMOS II. Hyperfine Interact 207, 97–105 (2012). https://doi.org/10.1007/s10751-011-0437-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-011-0437-y

Keywords

Navigation