Skip to main content
Log in

The ISOLDE RILIS pump laser upgrade and the LARIS Laboratory

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

On account of its high efficiency, speed and unmatched selectivity, the Resonance Ionization Laser Ion Source (RILIS) is the preferred method for ionizing the nuclear reaction products at the ISOLDE on-line isotope separator facility. By exploiting the unique electronic energy level ‘fingerprint’ of a chosen element, the RILIS process of laser step-wise resonance ionization enables an ion beam of high chemical purity to be sent through the mass selective separator magnet. The isobaric purity of a beam of a chosen isotope is therefore greatly increased. The RILIS, comprising of up to three frequency tunable pulsed dye lasers has been upgraded with the installation of a Nd:YAG pump laser as a replacement for the old Copper Vapor Laser (CVL) system. A summary of the current Nd:YAG pumped RILIS performance is given. To accompany the RILIS pump laser upgrade, a new ionization scheme for manganese has been developed at the newly constructed LAser Resonance Ionization Spectroscopy (LARIS) laboratory and successfully applied for on-line RILIS operation. An overview of the LARIS facility is given along with details of the ionization scheme development work for manganese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mishin, V., Fedoseyev, V., Kluge, H.-J., Letokhov, V., Ravn, H., Scheerer, V., Shirakabe, Y., Sundell, S, Tengblad, O.: Nucl. Instrum. Methods Phys. Res., B 73, 550 (1993)

    Article  ADS  Google Scholar 

  2. Fedoseyev, V., Huber, G., Köster, U., Lettry, J., Mishin, V., Ravn, H., Sebastian, V.: Hyperfine Interact. 127, 409 (2000)

    Article  ADS  Google Scholar 

  3. Lindroos, M., Butler, P., Huyse, M., Riisager, K.: Nucl. Instrum. Methods Phys. Res., B 266(19–20), 4687 (2008)

    Article  ADS  Google Scholar 

  4. Fedosseev, V., Berg, L., Lebas, N., Launila, O., Lindroos, M., Losito, R., Marsh, B., Osterdahl, F., Pauchard, T., Transtromer, G.: Nucl. Instrum. Methods Phys. Res., B 266(19–20), 4378 (2008)

    Article  ADS  Google Scholar 

  5. Du, K., Wu, N., Xu, J., Giesekus, J., Loosen, P., Poprawe, R.: Opt. Lett. 23(5), 370 (1998)

    Article  ADS  Google Scholar 

  6. Marsh, B.A., Fedosseev, V.N., Kosuri, P.: Hyperfine Interact. 171, 109 (2007)

    Article  ADS  Google Scholar 

  7. Smalley, R.E.: Laser Chem. 2(3–4), 167 (1983)

    Article  Google Scholar 

  8. Doverstal, M., Lindgren, B., Sassenberg, U., Yu, H.: Phys. Scr. 43, 572 (1991)

    Article  ADS  Google Scholar 

  9. Gangrsky, Yu. P., Zemlyanoi, S.G., Izosimov, I.N., Markov, B.N., Tam, T.K.: Instrum. Exp. Tech. 33, 168 (1990)

    Google Scholar 

  10. Batzner, K., Fedoseyev, V.N., Catherall, R., Evensen, A.H.M., Forkel-Wirth, D., Jonsson, O.C., Kugler, E., Lettry, J., Mishin, V.I., Ravn, H.L., Weyer, G.: Nucl. Instrum. Methods Phys. Res., B 126(1–4), 88 (1997)

    Google Scholar 

  11. Kurucz, R.: Transactions of the International Astronomical Union, vol. XXB, pp. 168–172 (edited by M. McNally). Kluwer, Dordrecht (1988)

    Google Scholar 

  12. Ralchenko, Y., Kramida, A.E., Reader, J., and NIST ASD Team: NIST Atomic Spectra Database 3.1.5 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Marsh.

Additional information

F. K. Österdahl, deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marsh, B.A., Berg, LE., Fedorov, D.V. et al. The ISOLDE RILIS pump laser upgrade and the LARIS Laboratory. Hyperfine Interact 196, 129–141 (2010). https://doi.org/10.1007/s10751-010-0168-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-010-0168-5

Keywords

Navigation