Skip to main content
Log in

Quadrupole coupling constants and isomeric Mössbauer shifts for halogen-containing gold, platinum, niobium, tantalum and antimony compounds

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

We have analyzed by means of Density functional theory calculations the nuclear quadrupole coupling constants of a range of gold, antimony, platinum, niobium and tantalum compounds. The geometrical parameters and halogen nuclear quadrupole coupling constants obtained by these calculations substantially corresponded to the data of microwave and nuclear quadrupole resonance spectroscopy. An analysis of the quality of the calculations that employ pseudo-potentials and all-electron basis sets for the halogen compounds was carried out. The zero order regular approximation (ZORA) method is shown to be a viable alternative for the calculation of halogen coupling constants in molecules. In addition, the ZORA model, in contrast to the pseudo-potential model, leads to realistic values of all metal nuclear quadrupole coupling constants. From Klopman’s approach, it follows that the relationship between the electrostatic bonding and covalent depends on the nature of the central atom. The results on Mössbauer chemical shifts are also in a good agreement with the coordination number of the central atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bancroft, G.M.: Moessbauer Spectroscopy. An Introduction for Inorganic Chemists and Geochemists. Wiley, New York (1973)

    Google Scholar 

  2. Parish, R.V.: Correlation of Moessbauer isomer’s shifts and quadrupole coupling constants with electron configurations for tin, antimony, tellurium, and iodine. Coord. Chem. Rev. 42, 49–58 (1982)

    Article  Google Scholar 

  3. Townes, C.H., Dailey, B.P.: Determination of electronic structure of molecules from nuclear quadrupole effects. J. Chem. Phys. 17, 782–796 (1949)

    Article  ADS  Google Scholar 

  4. Poleshchuk, O.Kh., Shevchenko, E.L., Branchadell, V., Lein, M., Frenking, G.: Energy analysis of the chemical bond in group IV and V complexes: a density functional theory study. Int. J. Quant. Chem. 101, 869–877 (2005)

    Article  Google Scholar 

  5. Poleshchuk, O.Kh., Koput, J., Latosinska, J., Nogaj, B.: Ab inito study of the bonding and nuclear quadrupole coupling in the Py–ICl complex. J. Mol. Struct. 513, 29–34 (1999)

    Article  ADS  Google Scholar 

  6. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  ADS  Google Scholar 

  7. Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. 37B, 785–789 (1988)

    ADS  Google Scholar 

  8. Stevens, P.J., Devlin, F.J., Chablowski, C.F., Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994)

    Article  Google Scholar 

  9. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Gill, P.M.W., Johnson, B.G., Robb, M.A., Cheeseman, J.R., Keith, T., Petersson, G.A., Montgomery, J.A., Raghavachari, K., Al-Laham, M.A., Zakrzewski, V., Ortiz, J.V., Foresman, J.B., Closlowski, J., Stefanov, B.B., Nanayakkara, A., Challacombe, M., Peng, C.Y., Ayala P.Y., Chen, W., Wong, M.W., Andress, J.L., Replogle, E.S., Gomperts, R., Martin, R.L., Fox, D.J., Binkley, J.S., Defress, D.J., Baker, J., Stewart, J.P., Head-Gordon, Gonzales, C., Pople, J.A.: Gaussian 98, Revision A. Gaussian, Inc., Pittsburg, PA (1998)

    Google Scholar 

  10. Parr, R.G.,Yang, W.: Density-functional Theory of Atoms and Molecules. Oxford University Press, Oxford (1989)

    Google Scholar 

  11. ADF2005.01; SCM, Theoretical Chemistry. Vrije Universitat, Amsterdam. http://www.scm.com (2008)

  12. te Velde, G., Bickelhaupt, F.M., Baerends, E.J., Fonseca-Guerra, C., van Gisbergen, S.J.A., Snijders, J.G., Ziegler, T.: Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001)

    Article  Google Scholar 

  13. Fortunelli, A., Germano, G.: Ab initio study of the intra- and intermolecular bonding in AuCl(CO). J. Phys. Chem., A 104, 10834–10841 (2000)

    Article  Google Scholar 

  14. Huber, K.P., Herzberg, G.: Molecular Spectra and Molecular Structure Constants of Diatomic Molecules. Van Nostrand, New York (1979)

    Google Scholar 

  15. van Lenthe, E., Baerends, E.J., Snijders, J.G.: Relativistic regular two-component Hamiltonians. J. Chem. Phys. 99, 4597–4610 (1993)

    Article  ADS  Google Scholar 

  16. van Lenthe, E., Baerends, E.J., Snijders, J.G.: Relativistic total energy using regular approximations. J. Chem. Phys. 101, 9783–9792 (1994)

    Article  ADS  Google Scholar 

  17. van Lenthe, E., Snijders, J.G., Baerends, E.J.: The zero-order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules. J. Chem. Phys. 105, 6505–6516 (1996)

    Article  ADS  Google Scholar 

  18. van Lenthe, E., van Leeuwen, R., Baerends, E.J., Snijders, J.G.: Relativistic regular two-component Hamiltonians. Int. J. Quant. Chem. 57, 281–293 (1996)

    Article  Google Scholar 

  19. van Lenthe, E., Ehlers, A.E., Baerends, E.J.: Geometry optimizations in the zero order regular approximation for relativistic effects. J. Chem. Phys. 110, 8943–8953 (1999)

    Article  ADS  Google Scholar 

  20. Evans, C.J., Gerry, M.C.L.: The pure rotational spectra of AuCl and AuBr. J. Mol. Spectrosc. 203, 105–117 (2000)

    Article  ADS  Google Scholar 

  21. Evans, C.J., Lesarri, A., Gerry, M.C.L.: Noble gas–metal chemical bonds. Microwave spectra, geometries, and nuclear quadrupole coupling constants of Ar–AuCl and Kr–AuCl. J. Am. Chem. Soc. 122, 6100–6105 (2000)

    Article  Google Scholar 

  22. Walker, N.R., Gerry, M.C.L.: Microwave spectra, geometries, and hyperfine constants of OCAgX (X = F, Cl, Br). Inorg. Chem. 41, 1236–1242 (2002)

    Article  Google Scholar 

  23. Buslaev, Yu.A., Kravchenko, E.A., Kolditz, L.: Nuclear quadrupole resonance in inorganic chemistry. Coord. Chem. Rev. 82, 9–231 (1987)

    Article  Google Scholar 

  24. Sternheimer, R.M.: Effect of the atomic core on the nuclear quadrupole coupling. Phys. Rev. 95, 736–750 (1954)

    Article  ADS  Google Scholar 

  25. Bowen, L.H., Long, G.G.: Antimony(V) orbital populations from antimony-121 Moessbauer data. Inorg. Chem. 15, 1039–1044 (1976)

    Article  Google Scholar 

  26. Friedt, J.M., Shenoy, G.K., Burgard, M.: Mössbauer spectroscopy of 121Sb in adduct complexes of antimony pentachloride. J. Chem. Phys. 59, 4468–4473 (1973)

    Article  ADS  Google Scholar 

  27. Poleshchuk, O.Kh., Latosinska, J.N., Yakimov, V.G.: Quadrupole coupling constants and isomeric Moessbauer shifts for inorganic compounds and complexes containing elements from period V calculated by ab initio methods. Phys. Chem. Chem. Phys. 2, 1877–1882 (2000)

    Article  Google Scholar 

  28. Dickson, D.P.E., Berry, F.J.: Mössbauer Spectroscopy. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  29. Frenking, G., Wichamann, K., et al.: Towards a rigorously defined quantum chemical analysis of the chemical bond in donor–acceptor complexes. Coord. Chem. Rev. 238239, 55–82 (2003)

    Article  Google Scholar 

  30. Klopman, G.: Chemical reactivity and the concept of charge- and frontier-controlled reactions. J. Am. Chem. Soc. 90, 223–234 (1968)

    Article  Google Scholar 

  31. Pearson, R.G.: Chemical Hardness. Wiley-VCH, Weinheim (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. K. Poleshchuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poleshchuk, O.K., Branchadell, V., Ritter, R.A. et al. Quadrupole coupling constants and isomeric Mössbauer shifts for halogen-containing gold, platinum, niobium, tantalum and antimony compounds. Hyperfine Interact 181, 27–36 (2008). https://doi.org/10.1007/s10751-008-9698-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-008-9698-5

Keywords

Navigation