Skip to main content
Log in

Anisotropies in electronic densities and electrostatic potentials of Halonium Ions: focus on Chlorine, Bromine and Iodine

  • Brief Report
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Why are the halonium cations so effective in forming strongly-bound complexes? We directed our research to address this question and we present electrostatic potential data for the valence-state halogen atoms X and halonium cations X+, where X = Cl, Br, I. The electron densities and electrostatic potentials of the halonium cations show considerably greater anisotropy than do the valence state halogens. The distances from the electrostatic potential surface maxima to the halogen nuclei are about 0.5 Å smaller than the distances from the electrostatic potential surface minima to the nuclei, giving the halonium cations each a more disk-like shape than the corresponding neutral valence state halogens. Their surface electrostatic potentials are totally consistent with the directionalities of halonium cations in complexes and the strengths of their interactions. To add perspective to this brief report, we have included calculations of the isotropic cation K+ and noble gas Kr.

Methods

The calculations of the electrostatic potentials of the valence states of the halogen atoms Cl, Br and I and the halonium cations Cl+, Br+ and I+, as well as K+ and Kr, on 0.001 au contours of their electronic densities were carried out with Gaussian O9 and the Wave Function Analysis – Surface Analysis Suite (WFA-SAS) at the M06-2X/6–31 + G(d,p) and M06-2X/3-21G* levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets from the current study are available from the corresponding author on reasonable request.

References

  1. Delgado-Barrio G, Prat RF (1975) Deformed Hartree-Fock solutions for atoms. III. Convergent iterative process and results for O. Phys Rev A 12:2288–2297

    ADS  CAS  Google Scholar 

  2. Sen KD, Politzer P (1989) Characteristic features of the electrostatic potentials of singly-negative monoatomic ions. J Chem Phys 90:4370–4372

    ADS  CAS  Google Scholar 

  3. Pauling L (1960) The Nature of the Chemical Bond, 3rd edn. Cornell University Press, Ithaca

    Google Scholar 

  4. Awwadi FF, Willett RD, Peterson KA, Twamley B (2006) The nature of halogen–-halogen synthons: Crystallographic and theoretical studies. Chem Eur J 12:8952–8960

    CAS  PubMed  Google Scholar 

  5. Stevens ED (1979) Experimental electron density distribution of molecular chlorine. Mol Phys 37:27–45

    ADS  CAS  Google Scholar 

  6. Nyburg SC, Wong-Ng W (1979) Anisotropic atom-atom forces and the space group of solid chlorine. Proc R Soc London Ser A 367:29

    ADS  CAS  Google Scholar 

  7. Ikuta S (1990) Anisotropy of electron-density distribution around atoms in molecules: N, P, O and A atoms. J Mol Struct (Theochem) 205:191–201

    Google Scholar 

  8. Price SL, Stone AJ, Lucas J, Rowland RS, Thornly AE (1994) The nature of -Cl–-Cl- intermolecular interactions. J Am Chem Soc 116:4910–4918

    CAS  Google Scholar 

  9. Tsirelson VG, Zou PF, Tang T-H, Bader RFW (1995) Topological definition of crystal structure: Determination of the bonded interactions in solid molecular chlorine. Acta Cryst Sect A 51:143–153

    ADS  Google Scholar 

  10. Lommerse JPM, Stone AJ, Taylor R, Allen FH (1996) The nature and geometry of intermolecular interactions between halogens an oxygen or nitrogen. J Am Chem Soc 118:3108–3116

    CAS  Google Scholar 

  11. Bilawicz E, Rybarczyk-Pirek AJ, Dubis AT, Grabowski SJ (2007) Halogen bonding in crystal structure of 1-methylpyrrol-2-yl trichloromethyl ketone. J Mol Struct 829:208–211

    ADS  Google Scholar 

  12. JMurray JS, Politzer P, (2017) Molecular electrostatic potentials and noncovalent interactions. WIRES Comput Mol Sci 7:e1326

    Google Scholar 

  13. Politzer P, Murray JS (2021) The neglected nuclei. Molecules 26:2982

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Brinck T, Murray JS, Politzer P (1992) Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions. Int J Quantum Chem, Quantum Biol Symp 44(S19):57

    Google Scholar 

  15. Auffinger P, Hays FA, Westhof E, Shing Ho P (2004) Halogen bonding in biological molecules. Proc Nat Acad Sci USA 101:16789–16794

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: The σ-hole. J Mol Model 13:291–296

    CAS  PubMed  Google Scholar 

  17. Politzer P, Murray JS, Clark T (2010) Halogen bonding: An electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys 12:7748–7757

    CAS  PubMed  Google Scholar 

  18. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) σ-Holes, π-holes and electrostatically-driven interactions. J Mol Model 18:541–548

    CAS  PubMed  Google Scholar 

  19. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions. Phys Chem Chem Phys 15:11178–11189

    CAS  PubMed  Google Scholar 

  20. Bauzá A, Mooibroek TJ, Frontera A (2015) The bright future of unconventional σ/π-hole interactions. ChemPhysChem 16:2496–2517

    PubMed  Google Scholar 

  21. Wang H, Wang W, Jin WH (2016) σ-Hole bond vs π-hole bond: A comparison based on halogen bond. Chem Rev 116:5072–5104

    CAS  PubMed  Google Scholar 

  22. Politzer P, Murray JS, Clark T, Resnati G (2017) The σ-hole revisited. Phys Chem Chem Phys 19:32166–32178

    CAS  PubMed  Google Scholar 

  23. Bauzá A, Frontera A (2015) Aerogen bonding interaction: A new supramolecular force? Angew Chem Int Ed 54:7340–7343

    Google Scholar 

  24. Stenlid JH, Brinck T (2017) Extending the σ-hole concept to metals: An electrostatic interpretation of the effects of nanostructure in gold and platinum catalysis. J Am Chem Soc 139:11012–11015

    CAS  PubMed  Google Scholar 

  25. Stenlid JH, Johansson AJ, Brinck T (2018) σ-Holes and σ-lumps direct the Lewis basic and acidic interactions of noble metal nanoparticles: Introducing regium bonds. Phys Chem Chem Phys 20:2676–2692

    Google Scholar 

  26. Bauzá A, Alkorta I, Elguero J, Mooibroek TJ, Frontera A (2020) Spodium bonds: Noncovalent interactions involving Group 12 elements. Angew Chem Int Ed 59:17482–17487

    Google Scholar 

  27. Resnati G, Metrangolo P (2020) Coord Chem Rev, Celebrating 150 years from Mendelev: The periodic table of chemical interactions. 420:213409

  28. Daolio A, Pizzi A, Calabrese M, Terraneo G, Bordignon S, Frontera A, Resnati G (2021) Anion–-anion coinage bonds: The case of tetrachloridoaurate. Angew Chem Int Ed 60:14385–14389

    CAS  Google Scholar 

  29. Politzer P, Martinez J, Murray JS, Concha MC (2010) An electrostatic correction for improved crystal density predictions of energetic ionic compounds. Mol Phys 108:1391–1396

    ADS  CAS  Google Scholar 

  30. Politzer P, Lane P, Murray JS (2016) Electrostatic potentials, intralattice attractive forces and crystal densities of nitrogen-rich C, H, N, O salts. Crystals 6(7):1–14

    Google Scholar 

  31. Politzer P, Lane P, Murray JS (2016) Sensitivities of ionic explosives. Mol Phys 115:497–509

    ADS  Google Scholar 

  32. Cavallo G, Murray JS, Politzer P, Pilati T, Ursini M, Resnati G (2017) Halogen bonding in hypervalent iodine and bromine derivatives: Halonium salts. Int Union Crystallogr 4:411–419

    CAS  Google Scholar 

  33. Konidaris KF, Pilati T, Terraneo G, Politzer P, Murray JS, Scilabra P, Resnati G (2018) Cyanine dyes: Synergistic action of hydrogen, halogen and chalcogen bonds allow I42- anions in crystals. New J Chem 42:10463–10466

    CAS  Google Scholar 

  34. Konidaris K, Daolio A, Pizzi A, Scilabra P, Terraneo G, Quinci S, Murray JS, Politzer P, Resnati G (2022) Thiazolium salts as chalcogen bond donors. Cryst Growth Des 22:4987–4995

    CAS  Google Scholar 

  35. Turunen L (2020) Erdélyi M (2020) Halogen bonds of halonium ions. Chem Soc Rev 49:2688–2700

    CAS  PubMed  Google Scholar 

  36. Lindblad S, Németh FB, Földes T, Vanderkooy A, Pápai I, Erdélyi M (2020) O-I-O halogen bond of halonium ions. ChemComm 56:9671–9674

    CAS  Google Scholar 

  37. van der Heiden D, Rissanen K, Erdélyi M (2020) Asymmetric [N-I-N]+ halonium complexes in solution? ChemComm 56:14431–14434

    Google Scholar 

  38. Lindblad S, Sethio D, Berryman OB, Erdélyi M (2021) Modulating photoswitch performance with halogen, coordinative and hydrogen bonding: A comparison of relative bond strengths. ChemComm 57:6261–6263

    CAS  Google Scholar 

  39. Valasquez JD, Echeverría J, Alvarez S (2023) Structure and bonding of halonium compounds. Inorg Chem 62:8980–8992

    Google Scholar 

  40. Stewart RF (1979) On the mapping of electrostatic properties from bragg diffraction data. Chem Phys Lett 65:335–342

    ADS  CAS  Google Scholar 

  41. Politzer P, Truhlar DG (eds) (1981) Chemical Applications of Atomic and Molecular Electrostatic Potentials. Plenum Press, New York

    Google Scholar 

  42. Klein CL, Stevens ED (1988) Charge density studies of drug molecules, in: Structure and Reactivity, Liebman JF, Goldberg A, eds, VCH Publishers, New York, ch 2, pp 26-64

  43. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) Properties of atoms in molecules: Atomic volumes. J Am Chem Soc 109:7968–7979

    CAS  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al (2009) Gaussian 09, Revision A1. Gaussian Inc, Wallingford, CT

    Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al (2016) Gaussian 16. Gaussian Inc, Wallingford, CT

    Google Scholar 

  46. Bulat F, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) Quantitative analysis of molecular surfaces: Areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model 16:1679–1691

    CAS  PubMed  Google Scholar 

  47. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acct 120:215–241

    CAS  Google Scholar 

  48. Riley KE, Tran K, Lane P, Murray JS, Politzer P (2016) Comparative analysis of electrostatic potential maxima and minima on molecular surfaces by three methods and a variety of basis sets. J Comput Sci 17:273–284

    Google Scholar 

  49. Politzer P, Murray JS (2013) Halogen bonding: An interim discussion. ChemPhysChem 14:278–294

    CAS  PubMed  Google Scholar 

  50. Hennemann M, Murray JS, Politzer P, Riley KE, Clark T (2012) Polarization-induced σ-holes and hydrogen bonding. J Mol Model 18:2823–2832

    Google Scholar 

  51. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Perspectives on halogen bonding and other σ-hole interactions: lex parsimonaie (Occam’s razor). Comput Theoret Chem 998:2–8

    CAS  Google Scholar 

  52. Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21:52

    PubMed  Google Scholar 

  53. Duarte DJR, Sosa GL, Peruchena NM, Alkorta I (2016) Halogen bonding: The role of the polarizability of the electron-pair donor. Phys Chem Chem Phys 18:7300–7309

    CAS  PubMed  Google Scholar 

  54. Clark T, Hesselman A (2018) The Coulombic σ-hole model describes bonding in CX3I⋯Y complexes completely. Phys Chem Chem Phys 22:22849–22855

    Google Scholar 

  55. Clark T, Murray JS, Politzer P (2018) The σ-hole Coulombic interpretation of trihalide anion formation. ChemPhysChem 19:3044–3049

    CAS  PubMed  Google Scholar 

  56. Clark T, Murray JS, Politzer P (2018) A perspective on quantum mechanics and chemical concepts in describing noncovalent interactions. Phys Chem Chem Phys 20:30076–30082

    CAS  PubMed  Google Scholar 

  57. Brinck T, Boorfors AN (2019) Electrostatics and polarization determine the strength of the halogen bond: A red card for charge transfer. J Mol Model 25:125

    PubMed  Google Scholar 

  58. Slater JC (1972) Hellmann-Feynman and virial theorems in the Xα method. J Chem Phys 57:2389–2396

    ADS  CAS  Google Scholar 

  59. Bader RFW (2009) Bond paths are not chemical bonds. J Phys Chem A 113:10391–10396

    CAS  PubMed  Google Scholar 

  60. Rahm M, Hoffman R (2016) Distinguishing bonds. J Am Chem Soc 138:3731–3744

    CAS  PubMed  Google Scholar 

  61. Politzer P, Murray JS (2019) A look at bonds and bonding. Struct Chem 30:1153–1157

    CAS  Google Scholar 

  62. Politzer P, Murray JS (2022) The conceptual power of the Hellmann-Feynman theorem. Struct Chem 34:17–21

    Google Scholar 

Download references

Acknowledgements

JSM gives many thanks and gratitude for the years of dedication given by Peter Politzer to the field of theoretical and computational chemistry, and for his continuing inspiration in my life. PR would like to dedicate this paper to Peter Politzer and he will always be remembered as a great scientist and a great human being.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Ponnadurai Ramasami and Jane S. Murray. The first draft of the manuscript was written by Jane S. Murray. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Jane S. Murray.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramasami, P., Murray, J.S. Anisotropies in electronic densities and electrostatic potentials of Halonium Ions: focus on Chlorine, Bromine and Iodine. J Mol Model 30, 81 (2024). https://doi.org/10.1007/s00894-024-05869-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05869-5

Keywords

Navigation