Skip to main content
Log in

First Measurement of the Nuclear Charge Radii of Short-Lived Lithium Isotopes

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

A novel method for the determination of nuclear charge radii of lithium isotopes is presented. Precise laser spectroscopic measurements of the isotope shift in the lithium 2s → 3s transition are combined with highly accurate atomic physics calculation of the mass dependent isotope shift to extract the charge-distribution-sensitive information. This approach has been used to determine the charge radii of 8,9Li for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanihata I., Hamagaki H., Hashimoto O., Shida Y., Yoshikawa N., Sugimoto K., Yamakawa O., Kobayashi T. and Takahashi N., Phys. Rev. Lett. 55 (1985), 2676–2679.

    Article  ADS  Google Scholar 

  2. Bachelet C., Audi G., Gaulard C., Guénaut C., Herfurth F., Lunney D., De Saint Simon M., Thibault C. and the ISOLDE Collaboration, Europ. Phys. Supp. 1 (2005), 31–32.

    ADS  Google Scholar 

  3. Neyens G. et al., to be published.

  4. Sarazin F., Al-Khalili J. S., Ball G. C., Hackman G., Walker P. M., Austin R. A. E., Eshpeter B., Finlay P., Garrett P. E., Grinyer G. F., Koopmans K. A., Kulp W. D., Leslie J. R., Melconian D., Osborne C. J., Schumaker M. A., Scraggs H. C., Schwarzenberg J., Smith M. B., Svensson C. E., Waddington J. C. and Wood J. L., Phys. Rev. C 70 (2004), 031302–031305.

    Article  ADS  Google Scholar 

  5. Otten E. W., In: D. A. Bromley (ed.), Treatise on Heavy-ion Science, Vol. 8, Plenum, New York, 1989, p. 517.

    Google Scholar 

  6. Kluge H.-J. and Nörtershäuser W., Spectrochim, Acta Part B 58 (2003), 1031–1045.

    Article  Google Scholar 

  7. Shiner D., Dixson R. and Vedantham V., Phys. Rev. Lett 74 (1995), 3553–3556.

    Article  ADS  Google Scholar 

  8. Wang L.-B., Mueller P., Bailey K., Drake G. W. F., Greene, J. P., Henderson D., Holt R. J., Janssens R. V. F., Jiang C. L., Lu Z.-T., O'Connor T. P., Pardo R. C., Rehm K. E., Schiffer J. P. and Tang X. D., Phys. Rev. Lett. 93 (2004), 142501.

    Article  ADS  Google Scholar 

  9. Yan Z.-C. and Drake G. W. F., Phys. Rev. A 61 (2000), 022504.

    Article  ADS  Google Scholar 

  10. Yan Z.-C. and Drake G. W. F., Phys. Rev. A 66 (2002), 042504.

    Article  ADS  Google Scholar 

  11. Yan Z.-C. and Drake G. W. F., Phys. Rev. Lett. 91 (2003), 113004.

    Article  ADS  Google Scholar 

  12. Nörtershäuser W., Dax A., Ewald G., Katayama I., Kirchner R., Kluge H.-J., Kühl T., Sanchez R., Tanihata I., Tomaselli M., Wang H. and Zimmermann C., Nucl. Instrum. Meth. Phys. Res. B 204 (2003), 644–648.

    Article  ADS  Google Scholar 

  13. Ewald G., Nörtershäuser W., Dax A., Götte S., Kirchner R., Kluge H.-J., Kühl T., Sanchez R., Wojtaszek A., Bushaw B. A., Drake G. W. F., Yan Z.-C. and Zimmermann C., Phys. Rev. Lett. 93 (2004) 113002; Phys. Rev. Lett. 94 (2005), 039901.

    Article  ADS  Google Scholar 

  14. de Jager C. W., deVries H. and deVries C., At. Data Nucl. Data Tables 14 (1974), 479–508.

    Article  ADS  Google Scholar 

  15. Sick I., Phys. Lett. B 576 (2003), 62–67.

    Article  ADS  Google Scholar 

  16. Kopecky S., Harvey J. A., Hill N. W., Krenn M., Pernicka M., Riehs P. and Steiner S., Phys. Rev. C 56 (1997), 2229–2237.

    Article  ADS  Google Scholar 

  17. Simon G. G., Schmitt C., Borkowski F. and Walther V. H., Nucl. Phys. A 333 (1980), 381–391.

    Article  ADS  Google Scholar 

  18. Bushaw B. A., Nörtershäuser W., Ewald G., Dax A. and Drake G. W. F., Phys. Rev. Lett. 91 (2003), 043004.

    Article  ADS  Google Scholar 

  19. Navrátil P. and Barrett B. R., Phys. Rev. C 57 (1998), 3119–3128.

    Article  ADS  Google Scholar 

  20. Navrátil P. and Ormand W. E., Phys. Rev. C 68 (2003), 034305.

    Article  ADS  Google Scholar 

  21. Suzuki Y., Lovas R. G. and Varga K., Prog. Theor. Phys. Suppl 146 (2002), 413–421.

    Article  ADS  Google Scholar 

  22. Tomaselli M., Kühl T., Nörtershäuser W., Ewald G., Sanchez R., Fritzsche S. and Karshenboim S. G., Can. J. Phys. 80 (2002), 1347–1354.

    Article  ADS  Google Scholar 

  23. Pieper S. C. and Wiringa R. B., Annual Rev. Nucl. Part Science 51 (2001), 53–90.

    Article  ADS  Google Scholar 

  24. Pieper S. C., Varga K. and Wiringa R. B., Phys. Rev. C 66 (2002), 044310.

    Article  ADS  Google Scholar 

  25. Tanihata I., Kobayashi T., Yamakawa O., Shimoura S., Ekuni K., Sugimoto K., Takahashi N., Shimoda T. and Sato H., Phys. Lett. B 206 (1988) 592–596.

    Article  Google Scholar 

  26. Audi G. and Wapstra A. H., Nucl. Phys. A 595 (1995), 409–480.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Nörtershäuser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nörtershäuser, W., Dax, A., Ewald, G. et al. First Measurement of the Nuclear Charge Radii of Short-Lived Lithium Isotopes. Hyperfine Interact 162, 93–100 (2005). https://doi.org/10.1007/s10751-005-9211-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-005-9211-3

Key Words

Navigation