Skip to main content

Advertisement

Log in

ILEEMS: Methodology and Applications to Iron Oxides

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

ILEEMS is the acronym for Integral Low-energy Electron Mössbauer Spectroscopy. In this variant of Mössbauer spectroscopy the low-energy electrons, E < ∼15 eV, emitted by the probe nuclei in the absorber are counted as a function of source velocity. As a consequence of their low energy, the detected electrons' origin lies within a very thin surface layer with thickness of a few nanometers and consequently, ILEEMS is a useful technique to examine surfaces of Fe-containing substances. In a first part of this paper the authors briefly describe the design of a home-made ILEEMS equipment allowing the temperature of the investigated sample to be varied between 77 K and room temperature. The second part of this contribution deals with a selection of results obtained from ILEEMS spectra for various Fe oxides. In particular, the following items are covered: (1) surface versus bulk Morin transition in small-particle and near-bulk hematite, α-Fe2O3; (2) bulk and thin-film magnetite, Fe3O4; (3) ferrihydrite, 5Fe2O3·9H20, goethite, α-FeOOH, and lepidocrocite, γ-FeOOH, all to some extent in relation to their morphology. Interesting and intriguing findings concerning the surface properties of these oxides were obtained and it is argued that the results encourage more systematic research in this and related fields using the surface-sensitive ILEEMS technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belozerski G. N., In: Mössbauer Studies of Surface Layers, Elsevier, Amsterdam, 1993.

    Google Scholar 

  2. Terrell J. H. and Spijkerman J. J., Appl. Phys. Lett. 13 (1968), 1.

    Article  ADS  Google Scholar 

  3. Yagnik C. M., Mazak R. A. and Collins R. L. Nucl. Instrum. Methods 114 (1974), 1.

    Article  Google Scholar 

  4. Sawicki J. A., Sawicka B. D. and Stanek J., Nucl. Instrum. Methods 138 (1976), 565.

    Article  Google Scholar 

  5. Parellada J., Polcari M. R., Burin K. and Rothberg G. M. Nucl. Instrum. Methods 179 (1981), 113.

    Article  Google Scholar 

  6. Toriyama T., Asano K., Saneyoshi K. and Hisatake K. Nucl. Instrum. Methods Phys. Res., B 4 (1984), 170.

    Article  ADS  Google Scholar 

  7. Stahl B., Klingerhöfer G., Jäger H., Keller H., Reitz T. and Kankeleit E., Hyperfine Interact. 58 (1990), 2547.

    Article  ADS  Google Scholar 

  8. Liljequist D. and Ismail M. Phys. Rev. B 31 (1985), 4131.

    Article  ADS  Google Scholar 

  9. Liljequist D., Ismail M., Saneyoshi K., Debusmann K., Keune W., Brand R. A. and Kiauka W., Phys. Rev. B 31 (1985), 4137.

    Article  ADS  Google Scholar 

  10. Pancholi C. S., de Waard H., Petersen W. L. J., van der Wijk A. and van Klinken J., Nucl. Instrum. Methods Phys. Res. 221 (1984), 577.

    Article  Google Scholar 

  11. Sawicki J. A. and Sawicka B. D., Hyperfine Interact. 13 (1983), 199.

    Article  ADS  Google Scholar 

  12. Philips Data Handbook, Book T9: Electron Tubes, Philips Export B.V., Eindhoven, 1987, p. 333.

  13. Sawicki J. A. and Tylisczak T., Nucl. Instrum. Methods 216 (1983), 501.

    Article  Google Scholar 

  14. Zabinsky J. S. and Tatarchuk B. J., Nucl. Instrum. Methods Phys. Res., B 31 (1988), 576.

    Article  ADS  Google Scholar 

  15. Klingerhöfer G. and Kankeleit E., Hyperfine Interact. 57 (1990), 1905.

    Article  ADS  Google Scholar 

  16. Klingerhöfer G. and Meisel W., Hyperfine Interact. 57 (1990), 1911.

    Article  ADS  Google Scholar 

  17. Murad E., Bowen L. H., Long G. J. and Quin G., Clay Miner. 23 (1988), 161.

    Article  Google Scholar 

  18. Jamber J. L. and Dutrizac J. E., Chem. Rev. 98 (1998), 2549.

    Article  Google Scholar 

  19. Vandenberghe R. E. and De Grave E., In: G. J. Long and F. Grandjean, Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 3, Plenum Press, New York, 1989, p. 59.

    Google Scholar 

  20. da Costa G. M., De Grave E., de Bakker P. M. A. and Vandenberghe R. E. Clays Clay Miner. 43 (1995), 656.

    Article  Google Scholar 

  21. da Costa G. M., De Grave E. and Vandenberghe R. E. Hyperfine Interact. 117 (1998) 207.

    Article  ADS  Google Scholar 

  22. Morrish A. H., Canted Antiferromagnetism: Hematite, World Scientific, Singapore, 1994.

    Google Scholar 

  23. De Grave E., Bowen L. H. and Chambaere D., J. Magn. Magn. Mater. 30 (1983), 349.

    Article  ADS  Google Scholar 

  24. Kündig W., Bömmel H., Constabaris G. and Lindquist R. H., Phys. Rev. 142 (1966), 327.

    Article  ADS  Google Scholar 

  25. van der Kraan A. M., Phys. Status Solidi, A 18 (1973), 215.

    Article  Google Scholar 

  26. Nininger Jr. R. C. and Schroeer D., J. Phys. Chem. Solids 39 (1978), 137.

    Article  Google Scholar 

  27. De Grave E., Bowen L. H., Vochten R. and Vandenberghe R. E., J. Magn. Magn. Mater. 72 (1988), 141.

    Article  ADS  Google Scholar 

  28. Vandenberghe R. E., Becze-Déak T. and De Grave E., In: I. Ortalli (ed), Proc. Int. Conf. on Applications of the Mössbauer Effect, Rimini 1995, SIF, Bologna, 1966, p. 207.

    Google Scholar 

  29. Vandenberghe E. R., Van San E., De Grave E. and da Costa G. M., Czech J. Phys. 51 (2001), 663.

    Article  ADS  Google Scholar 

  30. De Grave E., Bowen L. H. and Weed S. B., J. Magn. Magn. Mater. 27 (1982), 98.

    Article  ADS  Google Scholar 

  31. Shinjo T., Kiyama M., Sugita N., Watanabe K. and Takada T., J. Magn. Magn. Mater. 35 (1983), 133.

    Article  ADS  Google Scholar 

  32. Ji-Sen J., Xie-Long Y., Long-Wu C. and Nai-Fu Z., Appl. Phys. A 45 (1988), 245.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. De Grave.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Grave, E., Vandenberghe, R.E. & Dauwe, C. ILEEMS: Methodology and Applications to Iron Oxides. Hyperfine Interact 161, 147–160 (2005). https://doi.org/10.1007/s10751-005-9177-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-005-9177-1

Key Words

Navigation