Skip to main content
Log in

Iron speciation in minerals and glasses probed by \(\hbox{M}_{2/3}\)-edge X-ray Raman scattering spectroscopy

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present a spectroscopic study of the iron \(\hbox{M}_{2/3}\)-edge for several minerals and compounds to reveal information about the oxidation state and the local coordination of iron. We describe a novel approach to probe the iron \(\hbox{M}_{2/3}\)-edge bulk sensitively using X-ray Raman scattering. Significant changes in the onset and shape of the Fe \(\hbox{M}_{2/3}\)-edge were observed on ferrous and ferric model compounds with Fe in octahedral and tetrahedral coordination. Simulation of the spectra is possible using an atomic multiplet code, which potentially allows determination of, e.g., crystal-field parameters in a quantitative manner. A protocol is discussed for determination of the Fe oxidation state in compounds by linear combination of spectra of ferric and ferrous end members. The presented results demonstrate the capabilities of Fe \(\hbox{M}_{2/3}\)-edge spectroscopy by X-ray Raman scattering to extract information on the ratio of trivalent to total iron \(\hbox{Fe}^{3+}/\sum \hbox{Fe}\) and local coordination. As X-ray Raman scattering is performed with hard X-rays, this approach is suitable for in situ experiments at high pressure and temperature. It thus may provide indispensable information on oxidation state, electronic structure and local structure of materials that are important for physical and chemical processes of the deep Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andreozzi GB, Lucchesi S (2002) Intersite distribution of \({{{\rm Fe}}}^{2+}\) and Mg in the spinel (sensu stricto)-hercynite series by single-crystal X-ray diffraction. Am Min 87:1113–1120

    Google Scholar 

  • Antonangeli D, Siebert J, Badro J, Farber DL, Fiquet G, Morard G, Ryerson FJ (2010) Composition of the Earth’s inner core from high-pressure sound velocity measurements in Fe–Ni–Si alloys. Earth Planet Sci Lett 295:292–296

    Article  Google Scholar 

  • Badro J, Fiquet G, Guyot F, Rueff JP, Struzhkin VV, Vanko G, Monaco G (2003) Iron partitioning in Earth’s mantle: toward a deep lower mantle discontinuity. Science 300:789–791

    Article  Google Scholar 

  • Bergmann U, Groenzin H, Mullins OC, Glatzel P, Getzer J, Cramer SP (2004) X-Ray Raman spectroscopy: a new tool to study local structure of aromatic hydrocarbons and asphaltenes. Pet Sci Technol 22:863–875

    Article  Google Scholar 

  • Berry AJ, Yaxley GM, Woodland AB, Foran GJ (2010) A XANES calibration for determining the oxidation state of iron in mantle garnet. Chem Geol 278:31–37

    Article  Google Scholar 

  • Boulard E, Menguy N, Auzende AL, Benzerara K, Bureau H, Antonangeli D, Corgne A, Morard G, Siebert J, Perrillat JP, Guyot F, Fiquet G (2012) Experimental investigation of the stability of Fe-rich carbonates in the lower mantle. J Geophys Res 117:B02208

    Google Scholar 

  • Bourdelle F, Benzerara K, Beyssac O, Cosmidis J, Neuville DR, Brown GE Jr, Paineau E (2013) Quantification of the ferric/ferrous iron ratio in silicates by scanning transmission X-ray microscopy at the Fe \({\text{L}}_{2,3}\) edges. Contrib Miner Pet 166:423–434

    Article  Google Scholar 

  • Bradley JA, Moore KT, van der Laan G, Bradley JP, Gordon RA (2011) Core and shallow-core d- to f-shell excitations in rare-earth metals. Phys Rev B 84:205105

    Article  Google Scholar 

  • Cai YQ, Chow P, Chen CC, Ishii H, Tsang L, Kao CC, Liang KS, Chen CT (2004) Optical design and performance of the Taiwan inelastic X-ray scattering beamline (BL12XU) at SPring-8. AIP Conf Proc 705:340–343

    Article  Google Scholar 

  • Calvert CC, Brown A, Brydson R (2005) Determination of the local chemistry of iron in inorganic and organic materials. J Electron Spectrosc Relat Phenom 143:173–187

    Article  Google Scholar 

  • Cavé L, Al T, Loomer D, Cogswell S, Weaver L (2006) A STEM/EELS method for mapping iron valence ratios in oxide minerals. Micron 37:301–309

    Article  Google Scholar 

  • Crocombette JP, Pollak M, Jollet F, Thromat N, Gautier-Soyer M (2006) X-Ray near-edge absorption study of temperature-induced low-spin-to-high-spin change in metallo-supramolecular assemblies. Phys Rev B 52:3143–3150

    Article  Google Scholar 

  • de Groot FMF (2005) Multiplet effects in X-ray spectroscopy. Coord Chem Rev 249:31–63

    Article  Google Scholar 

  • de Groot FMF, Glatzel P, Bergmann U, van Aken PA, Barrea RA, Klemme S, Hävecker M, Knop-Gericke A, Heijboer WM, Weckhuysen BM (2005) 1s2p resonant inelastic X-ray scattering of iron oxides. J Phys Chem B 109:20751–20762

    Article  Google Scholar 

  • de Groot FMF (2008) Ligand and metal X-ray absorption in transition metal complexes. Inorg Chem Acta 361:850–856

    Article  Google Scholar 

  • de Groot FMF, de Smit E, van Schooneveld MM, Aramburo LR, Weckhuysen BMX (2008) In-situ scanning transmission X-ray microscopy of catalytic solids and related nanomaterials. Chem Phys Chem 11:951–962

    Article  Google Scholar 

  • Ding Y, Chen CC, Zeng Q, Kim HS, Han MJ, Balasubramanian M, Gordon R, Li F, Bai L, Popov D, Heald SM, Gog T, Mao H, van Veenendaal M (2014) Novel high-pressure monoclinic metallic phase of V2O3. Phys Rev Lett 112:056401

    Article  Google Scholar 

  • Drewitt JE, Sanloup C, Bytchkov A, Brassamin S, Hennet L (2013) Structure of \(({\text{Fe}}_x{\text{Ca}}_{1-x}{\text{O}})_y({\text{SiO}}_2)_{1-y}\) liquids and glasses from high-energy X-ray diffraction: implications for the structure of natural basaltic magmas. Phys Rev B 87:224201

    Article  Google Scholar 

  • Duffy TS (2013) Mineralogy at the extremes. Nature 451:269–270

    Article  Google Scholar 

  • Dunlap RA, Edelman DA, Mackay GR (1998) A Mössbauer effect investigation of correlated hyperfine parameters in natural glasses (tektites). J Non-Cryst Solids 223:141–146

    Article  Google Scholar 

  • Edwards C, Bond PL, Druschel GK, McGuire MM, Hamers RJ, Banfield JFX (1998) Geochemical and biological aspects of sulphide mineral dissolution: lessons from Iron Mountain, California. Chem Geol 169:383–397

    Article  Google Scholar 

  • Fang C, Ahuja R (2008) Local structure and electronic spin transition of Fe-bearing \({\text{MgSiO}}_3\) perovskite under conditions of the Earth’s lower mantle. Phys Earth Planet Inter 166:77–82

    Article  Google Scholar 

  • Farges F, Lefrere Y, Rossano S, Berthereau A, Calas G, Brown GE Jr (2004) The effect of redox state on the local structural environment of iron in silicate glasses: a combined XAFS spectroscopy, molecular dynamics, and bond valence study. J Non-Cryst Solids 344:176–188

    Article  Google Scholar 

  • Fierro G, Moretti G, Ferraris G, Andreozzi GB (2011) A Mössbauer and structural investigation of Fe–ZSM-5 catalysts: influence of Fe oxide nanoparticles size on the catalytic behaviour for the NO-SCR by \({\text{C}}_3{\text{H}}_8\). Appl Catal B Environ 102:215–223

    Article  Google Scholar 

  • Fister TT, Seidler GT, Wharton L, Battle AR, Ellis TB, Cross JO, Macrander AT, Elam WT, Tyson TA, Qian Q (2006) Multielement spectrometer for efficient measurement of the momentum transfer dependence of inelastic X-ray scattering. Rev Sci Instrum 77:063901

    Article  Google Scholar 

  • Fister TT, Magle KP, Vila FD, Seidler GT, Hamner C, Cross JO, Rehr JJ (2009) Intermediate-range order in water ices: nonresonant inelastic X-ray scattering measurements and real-space full multiple scattering calculations. Phys Rev B 79:174117

    Article  Google Scholar 

  • Fuggle JC, Alvarado SF (2006) Core-level lifetimes as determined by X-ray photoelectron spectroscopy measurements. Phys Rev A 22:1615–1624

    Article  Google Scholar 

  • Galoisy L, Callas G, Arrio MA (2001) High-resolution XANES spectra of iron in minerals and glasses: structural information from the pre-edge region. Chem Geol 174:307–319

    Article  Google Scholar 

  • Gauthier C, Sole VA, Signorato R, Goulon J, Moguiline E (1999) The ESRF beamline ID26: X-ray absorption on ultra dilute sample. J Synchrotron Radiat 6:164–166

    Article  Google Scholar 

  • Gordon RA, Seidler GT, Fister TT, Haverkort MW, Sawatzky GA, Tanaka A, Sham TK (2008) High multipole transitions in NIXS: valence and hybridization in 4f systems. EPL 81:26004

    Article  Google Scholar 

  • Gordon RA, Haverkort MW, Sen Gupta S, Sawatzky GA (2009) Orientation-dependent X-ray Raman scattering from cubic crystals: natural linear dichroism in MnO and \({\text{CeO}}_2\). J Phys Conf Ser 190:012047

    Article  Google Scholar 

  • Hämäläinen K, Manninen S (2001) Resonant and non-resonant inelastic X-ray scattering. J Phys Condens Matter 13:7539–7555

    Article  Google Scholar 

  • Haverkort MW, Tanaka A, Tjeng LH, Sawatzky GA (2007) Nonresonant Inelastic X-ray scattering involving excitonic excitations: the examples of NiO and CoO. Phys Rev Lett 99:257401

    Article  Google Scholar 

  • Heijboer WM, Koningsberger DC, Weckhuysen BM, de Groot FMF (2005) New frontiers in X-ray spectroscopy in heterogeneous catalysis: using Fe/ZSM-5 as test-system. Catal Today 110:228–238

    Article  Google Scholar 

  • Hofmeister AM (2006) Is low-spin \({\text{Fe}}^{2+}\) present in Earth’s mantle? Earth Planet Sci Lett 243:44–52

    Article  Google Scholar 

  • Honkanen AP, Verbeni R, Simonelli L, Moretti Sala M, Monaco G, Huotari S (2013) Study on the reflectivity properties of spherically bent analyser crystals. J Synchrotron Radiat 21:104–110

    Article  Google Scholar 

  • Inkinen J, Sakko A, Ruotsalainen KO, Pylkkänen T, Niskanen J, Galambosi S, Hakala M, Monaco G, Huotari S, Hämäläinen K (2013) Temperature dependence of CO2 and N2 core-electron excitation spectra at high pressure. Phys Chem Chem Phys 15:9231–9238

    Article  Google Scholar 

  • Irifune T, Isshiki M (1998) Iron partitioning in a pyrolite mantle and the nature of the 410-km seismic discontinuity. Nature 392:702–705

    Article  Google Scholar 

  • Jackson WE, Farges F, Yeager M, Mabrouk PA, Rossano S, Waychunas GA, Solomon EA, Brown GE Jr (2005) Multi-spectroscopic study of Fe(II) in silicate glasses: implications for the coordination environment of Fe(II) in silicate melts. Geochim Cosmochim Acta 69:4315–4332

    Article  Google Scholar 

  • Krisch M, Sette F (2002) X-ray Raman scattering from low-Z materials. Surf Rev Lett 9:969–976

    Article  Google Scholar 

  • Krywka C, Paulus M, Sternemann C, Volmer M, Remhof A, Nowak G, Nefedov A, Poter B, Spiegel M, Tolan M (2007) The small-angle and wide-angle X-ray scattering set-up at beamline BL9 of DELTA. J Synchrotron Radiat 14:244–251

    Article  Google Scholar 

  • Lee SK, Eng PJ, Mao H-K, Meng Y, Newville M, Hu MY, Shu J (2005) Probing of bonding changes in \({\text{B}}_2{\text{O}}_3\) glasses at high pressure with inelastic X-ray scattering. Nat Mater 4:851–854

    Article  Google Scholar 

  • Lee SK, Lin J-F, Cai YQ, Hiraoka N, Eng PJ, Okuchi T, Mao H-K, Meng Y, Hu MY, Chow P, Shu J, Li B, Fukui H, Lee BH, Kim HN, Yoo C-S (2008) X-ray Raman scattering study of \({\text{MgSiO}}_3\) glass at high pressure: implication for triclustered \({\text{MgSiO}}_3\) melt in Earth’s mantle. PNAS 105:7925–7929

    Article  Google Scholar 

  • Lin J-F, Mao Z, Yavaş H, Zhao J, Dubrovinsky L (2010) Shear wave anisotropy of textured hcp-Fe in the Earth’s inner core. Earth Planet Sci Lett 298:361–366

    Article  Google Scholar 

  • Mao WL, Mao H-k, Eng PJ, Trainor TP, Newville M, Kao C-c, Heinz DL, Shu J, Meng Y, Hemley RJ (2003) Bonding changes in compressed superhard graphite. Science 302:425–427

    Article  Google Scholar 

  • Mattila A, Soininen JA, Galambosi S, Huotari S, Vanko G, Zhigadlo ND, Karpinski J, Hämäläinen K (2005) Local electronic structure of MgB2 by X-ray Raman scattering at the boron K edge. Phys Rev Lett 94:247003

    Article  Google Scholar 

  • McCammon CA (1997) Perovskite as a possible sink for ferric iron in the lower mantle. Nature 387:694–696

    Article  Google Scholar 

  • McCammon CA, Frost DJ, Smyth JR, Laustsen HMS, Kawamoto T, Ross NL, van Aken PA (2004) Oxidation state of iron in hydrous mantle phases: implications for subduction and mantle oxygen fugacity. Phys Earth Planet Inter 143–144:157–169

    Article  Google Scholar 

  • Miot J, Benzerara K, Obst M, Kappler A, Hegler F, Schädler S, Bouchez C, Guyot F, Morin G (2009) Extracellular iron biomineralization by photoautotrophic iron-oxidizing bacteria. Appl Environ Microbiol 75(17):5586–5591

    Article  Google Scholar 

  • Moreau P, Boucher F (2012) Revisiting lithium K and iron \({\text{M}}_{2,3}\) edge superimposition: the case of lithium battery material \({\text{LiFePO}}_4\). Micron 43:16–21

    Article  Google Scholar 

  • Munoz M, De Andrade V, Vidal O, Lewin E, Pascarelli S, Susini J (2006) Redox and speciation micromapping using dispersive X-ray absorption spectroscopy: application to iron chlorite mineral of a metamorphic rock thin section. Geochem Geophys Geosyst 7:Q11020

    Article  Google Scholar 

  • Mysen BO (1991) Relations between structure, redox equilibria of iron, and properties of magmatic liquids. In: Perchuk LL, Kushiro I (eds) Advances in physical chemistry, vol 9. Springer, New York, pp 41–98

  • Narygina O, Mattesini M, Kantor I, Pascarelli S, Wu X, Aquilanti G, McCammon CA, Dubrovinsky L (2009) High-pressure experimental and computational XANES studies of (Mg, Fe)(Si, Al)\({\text{O}}_3\) perovskite and (Mg, Fe)O ferropericlase as in the Earths lower mantle. Phys Rev B 79:174115

    Article  Google Scholar 

  • Newville M, Sutton S, Rivers M, Eng P (1999) Micro-beam X-ray absorption and fluorescence spectroscopies at GSECARS: APS beamline 13ID. J Synchrotron Radiat 6:353–355

    Article  Google Scholar 

  • Nyrow A, Tse JS, Hiraoka N, Desgreniers S, Büning T, Mende K, Tolan M, Wilke M, Sternemann C (2014, in preparation)

  • Okuchi T (1997) Hydrogen partitioning into molten iron at high pressure: implications for Earths core. Science 278:1781–1784

    Article  Google Scholar 

  • Ono S, Ohishi Y, Kikegawa T (2007) High-pressure study of rhombohedral iron oxide, FeO, at pressures between 41 and 142 GPa. J Phys Condens Matter 19:036205

    Article  Google Scholar 

  • Otsuka K, McCammon CA, Karato S-I (2010) Tetrahedral occupancy of ferric iron in (Mg, Fe)O: implications for point defects in the Earth’s lower mantle. Phys Earth Planet. Inter 180:179–188

    Article  Google Scholar 

  • Pacella A, Andreozzi GB, Fournier J, Stievano L, Giantomassi F, Lucarini G, Rippo MR, Pugnaloni A (2012) Iron topochemistry and surface reactivity of amphibole asbestos: relations with in vitro toxicity. Anal Bioanal Chem 402(2):871–881

    Article  Google Scholar 

  • Parkinson IJ, Arculus RJ (1997) The redox state of subduction zones: insights from arc-peridotites. Chem Geol 160:409–423

    Article  Google Scholar 

  • Rossano S, Balan E, Morin G, Bauer JP, Calas G, Brouder C (1999) \(^{57}{\text{Fe}}\) Mössbauer spectroscopy of tektites. Phys Chem Miner 26:530–538

    Article  Google Scholar 

  • Sahle ChJ, Sternemann C, Schmidt C, Lehtola S, Jahn S, Simonelli L, Huotari S, Hakala M, Pylkkanen T, Nyrow A, Mende K, Tolan M, Hämäläinen K, Wilke M (2013) Microscopic structure of water at elevated pressures and temperatures. PNAS 110:6301–6306

    Article  Google Scholar 

  • Sahle ChJ, Sternemann C, Sternemann H, Tse JS, Gordon RA, Desgreniers S, Maekawa S, Yamanaka S, Lehmkühler F, Wieland DCF, Mende K, Huotari S, Tolan M (2014) The Ba 4d4f giant dipole resonance in complex Ba/Si compounds. J Phys B At Mol Opt Phys 47:045102

    Article  Google Scholar 

  • Schmid R, Wilke M, Oberhänsli R, Janssens K, Falkenberg G, Franz L, Gaab A (2003) Micro-XANES determination of ferric iron and its application in thermobarometry. Lithos 70:381–392

    Article  Google Scholar 

  • Schülke W (2007) Electron dynamics by inelastic X-ray scattering. OUP Oxford Press, Oxford

    Google Scholar 

  • Sen Gupta S, Bradley JA, Haverkort MW, Seidler GT, Tanaka A, Sawatzky GA (2011) Coexistence of bound and virtual-bound states in shallow-core to valence X-ray spectroscopies. Phys Rev B 84:075134

    Article  Google Scholar 

  • Smyth JR, Holl CM, Langenhorst F, Laustsen HMS, Rossmann GR, Kleppe A, McCammon CA, Kawamoto T, van Aken PA (2005) Crystal chemistry of wadsleyite II and water in the Earth’s interior. Phys Chem Miner 31:691–705

    Article  Google Scholar 

  • Sobolev VN, McCammon CA, Taylor LA, Snyder CA, Sobolev NV (1999) Precise Moessbauer milliprobe determination of ferric iron in rock-forming minerals and limitations of electron microprobe analysis. Am Mineral 84:78–85

    Google Scholar 

  • Soininen JA, Ankudinov AL, Rehr JJ (2005) Inelastic scattering from core electrons: a multiple scattering approach. Phys Rev B 72:045136

    Article  Google Scholar 

  • Soininen JA, Mattila A, Rehr JJ, Galambosi S, Hämäläinen K (2006) Experimental determination of the core-excited electron density of states. J Phys Condens Matter 18:7327–7336

    Article  Google Scholar 

  • Stavitski E, de Groot FMF (2010) The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. Micron 41:687–694

    Article  Google Scholar 

  • Sternemann C, Soininen JA, Huotari S, Vanko G, Volmer M, Secco RA, Tse JS, Tolan M (2005) X-Ray Raman scattering at the L edges of elemental Na, Si, and the N edge of Ba in Ba8Si46. Phys Rev B 72:035104

    Article  Google Scholar 

  • Sternemann H, Sternemann C, Seidler GT, Fister TT, Sakko A, Tolan M (2008) An extraction algorithm for core-level excitations in non-resonant inelastic X-ray scattering spectra. J Synchrotron Radiat 15:162–169

    Article  Google Scholar 

  • Sternemann C, Sahle ChJ, Mende K, Schmidt C, Nyrow A, Simonelli L, Moretti Sala M, Tolan M, Wilke M (2013) X-Ray Raman scattering: an exciting tool for the study of matter at conditions of the Earth’s interior. J Phys Conf Ser 425:202011

    Article  Google Scholar 

  • Tan H, Verbeeck J, Abakumov A, Van Tendeloo G (2012) Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy 116:24–33

    Article  Google Scholar 

  • Terasaki H, Kamada S, Sakai T, Ohtani E, Hirao N, Ohishi Y (2011) Liquidus and solidus temperatures of a Fe–O–S alloy up to the pressures of the outer core: implication for the thermal structure of the Earth’s core. Earth Planet Sci Lett 304:559–564

    Article  Google Scholar 

  • Thy P, Lofgren GE (1994) Experimental constraints on the low-pressure evolution of transitional and mildly alkalic basalts: the effect of Fe-Ti oxide minerals and the origin of basaltic andesites. Contrib Mineral Pet 116:340–351

    Article  Google Scholar 

  • Tse JS, Yang L, Zhang SJ, Jin CQ, Sahle ChJ, Sternemann C, Nyrow A, Giordano V, Jiang JZ, Yamanaka S, Desgreniers S, Tulk CA (2011) Pressure-induced electron topological transitions in Ba-doped Si clathrate. Phys Rev B 84:184105

    Article  Google Scholar 

  • Tse JS, Hanfland M, Flacau R, Desgreniers S, Li Z, Mende K, Gilmore K, Nyrow A, Moretti Sala M, Sternemann C (2013) Electronic structure and electron topology in the direct fcc \(\rightarrow\) sh transformation of silicon. J Phys Chem C 118:1161–1166

    Article  Google Scholar 

  • van Aken PA, Styrsa VJ, Liebscher B, Woodland AB, Redhammer GJ (1999) Microanalysis of \(\text{Fe}^{3+}/\sum \text{Fe}\) in oxide and silicate minerals by investigation of electron energy-loss near-edge structures (ELNES) at the Fe \(\text{M}_{2,3}\) edge. Phys Chem Miner 26:584–590

    Article  Google Scholar 

  • van der Laan G (1991) \(\text{M}_{2,3}\) absorption spectroscopy of 3d transition-metal compounds. J Phys Condens Matter 3:7443

    Article  Google Scholar 

  • Verbeni R, Pylkkänen T, Huotari S, Simonelli L, Vanko G, Martel K, Henriquet C, Monaco G (2009) Multiple-element spectrometer for non-resonant inelastic X-ray spectroscopy of electronic excitations. J Synchrotron Radiat 16:469–476

    Article  Google Scholar 

  • Virgo D, Mysen BO (1985) The structural state of iron in oxidized vs. reduced glasses at 1 atm: a \(^{57}\text{Fe}\) Mössbauer study. Phys Chem Miner 12:65–76

    Article  Google Scholar 

  • Westre TE, Kennepohl P, DeWitt JG, Hedman B, Hodgson KO, Solomon EI (1997) A multiplet analysis of Fe K-Edge 1s \(\rightarrow\) 3d pre-edge features of iron complexes. J Am Chem Soc 119(27):6297–6314

    Article  Google Scholar 

  • Wilke M, Behrens H (1999) The dependence of the partitioning of iron and europium between plagioclase and hydrous tonalitic melt on oxygen fugacity. Contrib Mineral Pet 137:102–114

    Article  Google Scholar 

  • Wilke M, Farges F, Petit P-E, Brown GE Jr, Martin F (2001) Oxidation state and coordination of Fe in minerals: an Fe K-XANES spectroscopic study. Am Mineral 86:714–730

    Google Scholar 

  • Wilke M, Partzsch GM, Bernhardt R, Lattard D (2005) Determination of the iron oxidation state in basaltic glasses using XANES at the K-edge. Chem Geol 220:143–161

    Article  Google Scholar 

  • Wilke M, Schmidt C, Farges F, Malavergne V, Gautron L, Simionovici S, Hahn M, Petit PE (2006) Structural environment of iron in hydrous aluminosilicate glass and melt-evidence from X-ray absorption spectroscopy. Chem Geol 229:144–161

    Article  Google Scholar 

  • Wilke M, Farges F, Partzsch GM, Schmidt C, Behrens H (2007) Speciation of Fe in silicate glasses and melts by in-situ XANES spectroscopy. Am Min 92:44–56

    Article  Google Scholar 

  • Wood BJ, Virgo D (1989) Upper mantle oxidation state: ferric iron contents of Iherzolite spinels by \(^{57}\text{Fe}\) Mossbauer spectroscopy and resultant oxygen fugacities. Geochim Cosmochim Acta 53:691–705

    Google Scholar 

  • Woodland AB, Jugo PJ (2012) A complex magmatic system beneath the Devès volcanic field, Massif Central, France: evidence from clinopyroxene megacrysts. Contrib Miner Pet 153(6):719–731

    Article  Google Scholar 

  • Xiong W, Peng J, Hu Y (2012) Use of X-ray absorption near edge structure (XANES) to identify physisorption and chemisorption of phosphate onto ferrihydrite-modified diatomite. J Colloid Interface Sci 368:528–532

    Article  Google Scholar 

  • Xu G, Lin X (2000) Geology and geochemistry of the Changlongshan skarn iron deposit, Anhui Province, China. Ore Geol Rev 16:91–106

    Article  Google Scholar 

  • Zerr A, Boehler R (1993) Melting of (Mg, Fe)\(\text{SiO}_{3}\)-perovskite to 625 kilobars: indication of a high melting temperature in the lower mantle. Science 262:553–555

    Article  Google Scholar 

  • Zerr A, Boehler R (1994) Constraints on the melting temperature of the lower mantle from high-pressure experiments from MgO and magnesiowüstite. Nature 371:506–508

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge ESRF, APS, SPring-8 and DELTA for providing synchrotron radiation. AN and KM would like to thank BMBF (05K10PEC and 05K13PE2) for financial support. JST and RAG acknowledge the support from NSERC of Canada (MFA, Discover grant). The authors would also like to thank M. Stuff and D. Rhede (GFZ) for the electron microprobe analysis of the AOQ-2 sample and J. Pohlenz for proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nyrow.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyrow, A., Sternemann, C., Wilke, M. et al. Iron speciation in minerals and glasses probed by \(\hbox{M}_{2/3}\)-edge X-ray Raman scattering spectroscopy. Contrib Mineral Petrol 167, 1012 (2014). https://doi.org/10.1007/s00410-014-1012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-1012-8

Keywords

Navigation