Skip to main content
Log in

Rooted floating-leaf macrophytes structure the coexistence of different phytoplankton assemblages within a shallow lake

  • MICROALGAL FUNCTIONAL TRAITS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Aquatic macrophytes in shallow lakes control habitats through local turbulence, water transparency, nutrient, and oxygen concentrations. As engineer species, they structure these ecosystems and increase biodiversity. Many studies have focused on submerged macrophytes, but research on habitats created by rooted floating-leaf macrophytes is scarcer. Macrophytes such as water lilies should have the similar ecological consequences as submerged macrophytes do, but with a greater shading effect. In this study, we show how macrophytes structure phytoplankton assemblages and allow different assemblages to coexist in the same shallow lake. During the summer of 2018, we characterized the phytoplankton assemblages in 9 stations covered by water lilies and 6 stations in open water, all in a large shallow lake. The lake was colonized on a third of its surface by water lilies from April to October. We showed an effect of waterlilies on temperature, oxygen, pH, turbidity, phosphates, and dissolved silicon. Many phytoplankton taxa from almost all classes were in higher abundance in the stations covered by macrophytes, while cyanobacteria showed a higher biomass and richness in open water. Unicellular mixotrophic flagellates predominated in the macrophyte habitats, where all representatives of the classes Euglenophyceae and Cryptophyceae were present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author.

References

  • Amoros, C., 1984. Introduction pratique à la systématique des organismes des eaux continentales françaises-5. Crustacés Cladocères. Bulletin de la Société Linnéenne de Lyon 53: 72–107.

    Google Scholar 

  • Andersen, M. R., K. Sand-Jensen, R. Iestyn Woolway & I. D. Jones, 2017. Profound daily vertical stratification and mixing in a small, shallow, wind-exposed lake with submerged macrophytes. Aquatic Sciences 79: 395–406. https://doi.org/10.1007/s00027-016-0505-0.

    Article  CAS  Google Scholar 

  • Beisner, B. E., H.-P. Grossart & J. M. Gasol, 2019. A guide to methods for estimating phago-mixotrophy in nanophytoplankton. Journal of Plankton Research 41: 77–89. https://doi.org/10.1093/plankt/fbz008.

    Article  CAS  Google Scholar 

  • Beklioglu, M. & B. Moss, 1996. Existence of a macrophyte-dominated clear water state over a very wide range of nutrient concentrations in a small shallow lake. Hydrobiologia 337: 93–106. https://doi.org/10.1007/BF00028510.

    Article  CAS  Google Scholar 

  • Bertolo, A., G. Lacroix, F. Lescher- Moutoué, & C. Cardinal-Legrand, 2000. Plankton dynamics in planktivore- and piscivore dominated mesocosms. In Fundamental and Applied Limnology (Vol. 147, Issue 3, pp. 327–349). E Schweizerbart Science Publishers.

  • Bertolo, A., G. Lacroix, F. Lescher-Moutouš & S. Sala, 1999. Effects of physical refuges on fish–plankton interactions. Freshwater Biology 41: 795–808. https://doi.org/10.1046/j.1365-2427.1999.00424.x.

    Article  Google Scholar 

  • Bledzki, L. A. & J. I. Rybak, 2016. Freshwater Crustacean Zooplankton of Europe: Cladocera & Copepoda (Calanoida, Cyclopoida) Key to species identification, with notes on ecology, distribution, methods and introduction to data analysis. Springer. https://doi.org/10.1007/978-3-319-29871-9.

    Article  Google Scholar 

  • Bolduc, P., A. Bertolo, C. Hudon & B. Pinel-Alloul, 2020. Submerged aquatic vegetation cover and complexity drive crustacean zooplankton community structure in a large fluvial lake: An in situ approach. Journal of Great Lakes Research Elsevier. https://doi.org/10.1016/j.jglr.2019.12.011.

    Article  Google Scholar 

  • Bolduc, P., A. Bertolo & B. Pinel-Alloul, 2016. Does submerged aquatic vegetation shape zooplankton community structure and functional diversity? A test with a shallow fluvial lake system. Hydrobiologia 778: 151–165. https://doi.org/10.1007/s10750-016-2663-4.

    Article  Google Scholar 

  • Borics, G., A. Abonyi, N. Salmaso & R. Ptacnik, 2021. Freshwater phytoplankton diversity: models, drivers and implications for ecosystem properties. Hydrobiologia 848: 53–75. https://doi.org/10.1007/s10750-020-04332-9.

    Article  CAS  PubMed  Google Scholar 

  • Bornette, G. & S. Puijalon, 2011. Response of aquatic plants to abiotic factors: a review. Aquatic Sciences 73: 1–14. https://doi.org/10.1007/s00027-010-0162-7.

    Article  CAS  Google Scholar 

  • Bortolini, J. C., A. Pineda, L. C. Rodrigues, S. Jati & L. F. M. Velho, 2017. Environmental and spatial processes influencing phytoplankton biomass along a reservoirs-river-floodplain lakes gradient: A metacommunity approach. Freshwater Biology 62: 1756–1767. https://doi.org/10.1111/fwb.12986.

    Article  CAS  Google Scholar 

  • Bostrom, B. & K. Pettersson, 1982. Different patterns of phosphorus release from lake sediments in laboratory experiments. Hydrobiologia 91: 415–429. https://doi.org/10.1007/PL00020032.

    Article  Google Scholar 

  • Callieri, C., G. Cronberg, & J. G. Stockner, 2012. Freshwater picocyanobacteria: single cells, microcolonies and colonial forms. In Whitton, B.A. (ed.). Ecology of Cyanobacteria II: Their diversity in space and time (pp. 229–269). Springer Science+Business Media B.V. DOI: https://doi.org/10.1007/978-94-007-3855-3_8

  • Caraco, N., J. Cole, S. Findlay & C. Wigand, 2006. Vascular plants as engineers of oxygen in aquatic systems. BioScience 56: 219. https://doi.org/10.1641/0006-3568(2006)056[0219:VPAEOO]2.0.CO;2.

    Article  Google Scholar 

  • Carpenter, S. R. & D. M. Lodge, 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26: 341–370. https://doi.org/10.1016/0304-3770(86)90031-8.

    Article  Google Scholar 

  • Carrick, H. J., F. J. Aldridge & C. L. Schelske, 1993. Wind influences phytoplankton biomass and composition in a shallow, productive lake. Limnology and Oceanography 38: 1179–1192. https://doi.org/10.4319/lo.1993.38.6.1179.

    Article  ADS  Google Scholar 

  • Cattaneo, A., C. Hudon, C. Vis & P. Gagnon, 2013. Hydrological control of filamentous green algae in a large fluvial lake (Lake Saint-Pierre, St. Lawrence River, Canada). Journal of Great Lakes Research 39: 409–419. https://doi.org/10.1016/j.jglr.2013.06.005.

    Article  Google Scholar 

  • Cazzanelli, M., T. P. Warming & K. S. Christoffersen, 2008. Emergent and floating-leaved macrophytes as refuge for zooplankton in a eutrophic temperate lake without submerged vegetation. Hydrobiologia 605: 113–122. https://doi.org/10.1007/s10750-008-9324-1.

    Article  Google Scholar 

  • Chen, S., W. Zhang, J. Zhang, E. Jeppesen, Z. Liu, J. P. Kociolek, X. Xu & L. Wang, 2019. Local habitat heterogeneity determines the differences in benthic diatom metacommunities between different urban river types. Science of the Total Environment 669: 711–720. https://doi.org/10.1016/j.scitotenv.2019.03.030.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Cottenie, K. & L. De Meester, 2003. Connectivity and cladoceran species richness in a metacommunity of shallow lakes. Freshwater Biology 48: 823–832. https://doi.org/10.1046/j.1365-2427.2003.01050.x.

    Article  Google Scholar 

  • Cunha, D. G. F., F. Bottino & M. do Carmo Calijuri, 2012. Can free-floating and emerged macrophytes influence the density and diversity of phytoplankton in subtropical reservoirs? Lake and Reservoir Management 28: 255–264. https://doi.org/10.1080/07438141.2012.724520.

    Article  CAS  Google Scholar 

  • De Caceres, Miquel, Florian Jansen, & Maintainer Miquel De Caceres, 2016. Package ‘indicspecies’. indicators 8 (1).

  • de Kluijver, A., J. Ning, Z. Liu, E. Jeppesen, R. D. Gulati & J. J. Middelburg, 2015. Macrophytes and periphyton carbon subsidies to bacterioplankton and zooplankton in a shallow eutrophic lake in tropical China. Limnology and Oceanography 60: 375–385. https://doi.org/10.1002/lno.10040.

    Article  ADS  Google Scholar 

  • De Nie, H. W., & European Inland Fisheries Advisory Commission, 1987. The decrease in aquatic vegetation in Europe and its consequences for fish populations. Food and Agricultural Organization of the United Nations.

  • DeWolf, E. I., W. J. Calder, J. G. Harrison, G. D. Randolph, B. E. Noren & C. Weinig, 2022. Aquatic macrophytes are associated with variation in biogeochemistry and bacterial assemblages of mountain lakes. Frontiers in Microbiology 12: 777084. https://doi.org/10.3389/fmicb.2021.777084.

    Article  PubMed  PubMed Central  Google Scholar 

  • Diehl, S., 1993. Effects of habitat structure on resource availability, diet and growth of benthivorous perch, Perca fluviatilis. Oikos. https://doi.org/10.2307/3545353.

    Article  Google Scholar 

  • Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco & J. M. Melack, 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51: 2388–2397. https://doi.org/10.4319/lo.2006.51.5.2388.

    Article  ADS  Google Scholar 

  • Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2.

    Article  Google Scholar 

  • Dussart, B., 1967. Les copépodes des eaux continentales d’Europe occidentale. Tome I: Calanoides et Harpacticoides. Paris: Editions Boubee & Cie. 500 p.

  • Finkel, Z. V., J. Beardall, K. J. Flynn, A. Quigg, T. A. V. Rees & J. A. Raven, 2009. Phytoplankton in a changing world: cell size and elemental stoichiometry. Journal of Plankton Research 32: 119–137. https://doi.org/10.1093/plankt/fbp098.

    Article  CAS  Google Scholar 

  • Finkel, Z. V. & A. J. Irwin, 2000. Modeling size-dependent photosynthesis: light absorption and the allometric rule. Journal of Theoretical Biology 204: 361–369. https://doi.org/10.1006/jtbi.2000.2020.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Gebrehiwot, M., D. Kifle, I. Stiers & L. Triest, 2017. Phytoplankton functional dynamics in a shallow polymictic tropical lake: the influence of emergent macrophytes. Hydrobiologia 797: 69–86. https://doi.org/10.1007/s10750-017-3161-z.

    Article  Google Scholar 

  • Grasshoff, P., 1983. Methods of seawater analysis. Verlag Chemie. FRG 419: 61–72.

    Google Scholar 

  • Gross, E. M., 2003. Allelopathy of aquatic autotrophs. Critical Reviews in Plant Sciences 22(3–4): 313–339. https://doi.org/10.1080/713610859.

    Article  Google Scholar 

  • Hornbach, D. J., E. G. Schilling & H. Kundel, 2020. Ecosystem metabolism in small ponds: the effects of floating-leaved macrophytes. Water 12(5): 1458. https://doi.org/10.3390/w12051458.

    Article  Google Scholar 

  • Huisman, J., G. A. Codd, H. W. Paerl, B. W. Ibelings, J. M. H. Verspagen & P. M. Visser, 2018. Cyanobacterial blooms. Nature Reviews Microbiology 16: 471–483. https://doi.org/10.1038/s41579-018-0040-1.

    Article  CAS  PubMed  Google Scholar 

  • James, W. F., J. W. Barko & M. G. Butler, 2004. Shear stress and sediment resuspension in relation to submersed macrophyte biomass. Hydrobiologia 515: 181–191. https://doi.org/10.1023/B:HYDR.0000027329.67391.c6.

    Article  Google Scholar 

  • Jaschinski, S., D. C. Brepohl & U. Sommer, 2011. The trophic importance of epiphytic algae in a freshwater macrophyte system (Potamogeton perfoliatus L.): stable isotope and fatty acid analyses. Aquatic Sciences 73: 91–101. https://doi.org/10.1007/s00027-010-0163-6.

    Article  CAS  Google Scholar 

  • Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), 1998. The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York.

    Google Scholar 

  • Jiang, X., L. Zhang, G. Gao, X. Yao, Z. Zhao & Q. Shen, 2019. High rates of ammonium recycling in northwestern Lake Taihu and adjacent rivers: an important pathway of nutrient supply in a water column. Environmental Pollution 252: 1325–1334. https://doi.org/10.1016/j.envpol.2019.06.026.

    Article  CAS  PubMed  Google Scholar 

  • Khan, F. A. & A. A. Ansari, 2005. Eutrophication: an ecological vision. The Botanical Review 71: 449–482. https://doi.org/10.1663/0006-8101(2005)071[0449:EAEV]2.0.CO;2.

    Article  Google Scholar 

  • Komárek, J., 1983. Das Phytoplankton des SuBwassers. 7. Teil. 1. Halfte. Chlorophyceae (Grunalgen) Ordnung: Chlorococcales. Die Binnengewasser Schweizerbart’shce Verlagsbuchhandlung.

  • Krammer, K., & H. Lange-Bertalot, 1986. Bacillariophyceae. 1. Teil: Naviculaceae. Gustav Fischer Verlag, Stuttgart, Stuttgart.

  • Krammer, K., & H. Lange-Bertalot, 1988. Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. Gustav Fischer Verlag, Stuttgart, Stuttgart.

  • Krammer, K., & H. Lange-Bertalot, 1991a. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Stuttgart.

  • Krammer, K., & H. Lange-Bertalot, 1991b. Bacillariophyceae. 4. Teil: Achnanthaceae. Kritische Erga ̈nzungen zu Navicula (Lineolatae) und Gomphonema. Gustav Fischer Verlag, Stuttgart, Stuttgart.

  • Labat, F., G. Thiébaut & C. Piscart, 2021. Principal Determinants of Aquatic Macrophyte Communities in Least-Impacted Small Shallow Lakes in France. Water 13(5): 609. https://doi.org/10.3390/w13050609.

    Article  Google Scholar 

  • Lauridsen, T.L., Jeppesen, E., Søndergaard, M. and Lodge, D.M., 1998. Horizontal migration of zooplankton: predator-mediated use of macrophyte habitat. In The structuring role of submerged macrophytes in lakes (pp. 233–239). Jeppesen E. et al. (ed.).

  • Le Moal, M., A. Pannard, L. Brient, B. Richard, M. Chorin, E. Mineaud & C. Wiegand, 2021. Is the cyanobacterial bloom composition shifting due to climate forcing or nutrient changes? Example of a shallow eutrophic reservoir. Toxins 13: 351. https://doi.org/10.3390/toxins13050351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x.

    Article  Google Scholar 

  • Loreau, M., N. Mouquet & R. D. Holt, 2003. Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecology Letters 6: 673–679. https://doi.org/10.1046/j.1461-0248.2003.00483.x.

    Article  Google Scholar 

  • Madsen, J. D., P. A. Chambers, W. F. James, E. W. Koch & D. F. Westlake, 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71–84. https://doi.org/10.1023/A:1017520800568.

    Article  Google Scholar 

  • Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1(4): 493–509.

    Google Scholar 

  • Masclaux, H., A. Bec & G. Bourdier, 2012. Trophic partitioning among three littoral microcrustaceans: relative importance of periphyton as food resource. Journal of Limnology 71(2): 261–266. https://doi.org/10.4081/jlimnol.2012.e28.

    Article  Google Scholar 

  • Misteli, B., A. Pannard, E. Aasland, S. F. Harpenslager, S. Motitsoe, K. Thiemer, S. Llopis, J. Coetzee, S. Hilt, J. Köhler, et al., 2023. Short-term effects of macrophyte removal on aquatic biodiversity in rivers and lakes. Journal of Environmental Management 325: 116442. https://doi.org/10.1016/j.jenvman.2022.116442.

    Article  CAS  PubMed  Google Scholar 

  • Misteli, B., A. Pannard, F. Labat, L. K. Fosso, N. C. Baso, S. F. Harpenslager, S. N. Motitsoe, G. Thiebaut & C. Piscart, 2022. How invasive macrophytes affect macroinvertebrate assemblages and sampling efficiency: Results from a multinational survey. Limnologica 96: 125998. https://doi.org/10.1016/j.limno.2022.125998.

    Article  CAS  Google Scholar 

  • Mortimer, C. H., 1941. The exchange of dissolved substances between mud and water in lakes. Journal of Ecology 29: 280–329. https://doi.org/10.2307/2256395.

    Article  CAS  Google Scholar 

  • Moss, B., S. Kosten, M. Meerhoff, R. W. Battarbee, E. Jeppesen, N. Mazzeo, K. Havens, G. Lacerot, Z. Liu, L. De Meester, H. Paerl & M. Scheffer, 2011. Allied attack: climate change and eutrophication. Inland Waters 1: 101–105. https://doi.org/10.5268/IW-1.2.359.

    Article  Google Scholar 

  • Oksanen, Jari, F. Guillaume Blanchet, Roeland Kindt, Pierre Legendre, Peter R. Minchin, R. B. O’Hara, Gavin L. Simpson, Maintainer Jari Oksanen, & M. A. S. S. Suggests, 2013. Package ‘vegan’.

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19. https://doi.org/10.1007/s10750-008-9645-0.

    Article  Google Scholar 

  • Paerl, H. W., 2017. Controlling harmful cyanobacterial blooms in a climatically more extreme world: management options and research needs. Journal of Plankton Research 39: 763–771. https://doi.org/10.1093/plankt/fbx042.

    Article  Google Scholar 

  • Paerl, H. W. & J. Huisman, 2008. Climate - Blooms like it hot. Science 320: 57–58. https://doi.org/10.1126/science.1155398.

    Article  CAS  PubMed  Google Scholar 

  • Paillisson, J.-M., & L. Marion, 2005. Productivité des macrophytes flottants du lac de Grand-Lieu: saison 2006. Effets de paramètres environnementaux. DIREN et Université de Rennes 1 Report.

  • Pannard, A., M. Bormans & Y. Lagadeuc, 2008. Phytoplankton species turnover controlled by physical forcing at different time scales. Canadian Journal of Fisheries and Aquatic Sciences 65: 47–60. https://doi.org/10.1139/f07-149.

    Article  Google Scholar 

  • Perrow, M. R., A. J. D. Jowitt, J. H. Stansfield, & G. L. Phillips, 1999. The practical importance of the interactions between fish, zooplankton and macrophytes in shallow lake restoration In Harper, D. M., B. Brierley, A. J. D. Ferguson, & G. Phillips (eds), The Ecological Bases for Lake and Reservoir Management. Springer Netherlands, Dordrecht: 199–210, https://doi.org/10.1007/978-94-017-3282-6_19.

  • Persson, I. & I. D. Jones, 2008. The effect of water colour on lake hydrodynamics: a modelling study. Freshwater Biology 53: 2345–2355. https://doi.org/10.1111/j.1365-2427.2008.02049.x.

    Article  Google Scholar 

  • Phillips, G., N. Willby & B. Moss, 2016. Submerged macrophyte decline in shallow lakes: What have we learnt in the last forty years? Aquatic Botany 135: 37–45. https://doi.org/10.1016/j.aquabot.2016.04.004.

    Article  Google Scholar 

  • Princiotta, S. D., S. P. Hendricks & D. S. White, 2019. Production of Cyanotoxins by Microcystis aeruginosa Mediates Interactions with the Mixotrophic Flagellate Cryptomonas. Toxins 11: 223. https://doi.org/10.3390/toxins11040223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428. https://doi.org/10.1093/plankt/24.5.417.

    Article  Google Scholar 

  • Reynolds, S. A. & D. C. Aldridge, 2021. Global impacts of invasive species on the tipping points of shallow lakes. Global Change Biology 27(23): 6129–6138. https://doi.org/10.1111/gcb.15893.

    Article  CAS  PubMed  Google Scholar 

  • Sand-Jensen, K., T. Riis, O. Vestergaard & S. E. Larsen, 2000. Macrophyte decline in Danish lakes and streams over the past 100 years. Journal of Ecology 88: 1030–1040. https://doi.org/10.1046/j.1365-2745.2000.00519.x.

    Article  Google Scholar 

  • Sarazin, G., J.-F. Gaillard, L. Philippe & C. Rabouille, 1995. Organic matter mineralization in the pore water of a eutrophic lake (Aydat Lake, Puy de Dôme, France). Hydrobiologia 315: 95–118. https://doi.org/10.1007/BF00033623.

    Article  CAS  Google Scholar 

  • Sayer, C. D., A. Burgess, K. Kari, T. A. Davidson, S. Peglar, H. Yang & N. Rose, 2010. Long-term dynamics of submerged macrophytes and algae in a small and shallow, eutrophic lake: implications for the stability of macrophyte-dominance. Freshwater Biology 55: 565–583. https://doi.org/10.1111/j.1365-2427.2009.02353.x.

    Article  CAS  Google Scholar 

  • Scheffer, M., 2001. Alternative attractors of shallow lakes. The Scientific World Journal 1: 254–263. https://doi.org/10.1100/tsw.2001.62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheffer, M., 2004. Ecology of Shallow Lakes. Kluwer Academic Publishers, The Netherlands. 357 pages. ISBN: 1-4020–2306–5

  • Scheffer, M. & E. Jeppesen, 2007. Regime shifts in shallow lakes. Ecosystems 10: 1–3. https://doi.org/10.1007/s10021-006-9002-y.

    Article  Google Scholar 

  • Schoelynck, J., K. Bal, H. Backx, T. Okruszko, P. Meire & E. Struyf, 2010. Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose? New Phytologist 186: 385–391. https://doi.org/10.1111/j.1469-8137.2009.03176.x.

    Article  CAS  PubMed  Google Scholar 

  • Smits, A., M. De Lyon, G. Van der Velde, P. Steentjes & J. Roelofs, 1988. Distribution of three nymphaeid macrophytes (Nymphaea alba L., Nuphar lutea (L.) Sm. and Nymphoides peltata (Gmel.) O. Kuntze) in relation to alkalinity and uptake of inorganic carbon. Aquatic Botany Elsevier 32: 45–62. https://doi.org/10.1016/0304-3770(88)90087-3.

    Article  Google Scholar 

  • Smolders, Alfons JP., Luc HT. Vergeer, Gerard Van Der Velde & Jan GM. Roelofs, 2000. Phenolic contents of submerged, emergent and floating leaves of aquatic and semi-aquatic macrophyte species: why do they differ? Oikos 91(2): 307–310. https://doi.org/10.1034/j.1600-0706.2000.910211.x.

    Article  CAS  ADS  Google Scholar 

  • Soares, M., M. A. de Rocha, M. Marinho, S. Azevedo, C. Branco & V. Huszar, 2009. Changes in species composition during annual cyanobacterial dominance in a tropical reservoir: physical factors, nutrients and grazing effects. Aquatic Microbial Ecology 57: 137–149. https://doi.org/10.3354/ame01336.

    Article  Google Scholar 

  • Sommer, U., 1988. Some size relationships in phytoflagellate motility. In Roger I. Jones & Veijo Ilmavirta (ed.). Flagellates in Freshwater Ecosystems (pp. 125–131). Developments in Hydrobiology, vol 45. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3097-1_10

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv Für Hydrobiologie 106(4): 433–471.

    Article  Google Scholar 

  • Søndergaard, M., P. J. Jensen, & E. Jeppesen, 2001. Retention and Internal Loading of Phosphorus in Shallow, Eutrophic Lakes. The Scientific World Journal, volume 1: 427–442. Article ID 676350. https://doi.org/10.1100/tsw.2001.72

  • Søndergaard, M., P. Kristensen & E. Jeppesen, 1992. Phosphorus release from resuspended sediment in the shallow and wind-exposed lake Arreso, Denmark. Hydrobiologia 228: 91–99. https://doi.org/10.1007/BF00006480.

    Article  Google Scholar 

  • Søndergaard, M. & B. Moss, 1998. Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. In Jeppesen, E., et al., (eds), The Structuring Role of Submerged Macrophytes in Lakes Springer, New York: 115–132.

    Chapter  Google Scholar 

  • Søndergaard, M., J. Theil-Nielsen, K. Christoffersen, L. Schlüter, E. Jeppesen & M. Søndergaard, 1998. Bacterioplankton and carbon turnover in a dense macrophyte canopy. In Jeppesen, E., et al., (eds), The Structuring Role of Submerged Macrophytes in Lakes Springer, New York: 250–261.

    Chapter  Google Scholar 

  • Stefanidis, K. & E. Dimitriou, 2019. Differentiation in aquatic metabolism between littoral habitats with floating-leaved and submerged macrophyte growth forms in a shallow eutrophic lake. Water 11: 287. https://doi.org/10.3390/w11020287.

    Article  CAS  Google Scholar 

  • Takamura, N., Y. Kadono, M. Fukushima, M. Nakagawa & B.-H. Kim, 2003. Effects of aquatic macrophytes on water quality and phytoplankton communities in shallow lakes. Ecological Research 18: 381–395. https://doi.org/10.1046/j.1440-1703.2003.00563.x.

    Article  CAS  Google Scholar 

  • Teubner, K., I. E. Teubner, K. Pall, M. Tolotti, W. Kabas, S.-S. Drexler, H. Waidbacher & M. T. Dokulil, 2022. Macrophyte habitat architecture and benthic-pelagic coupling: photic habitat demand to build up large P storage capacity and bio-surface by underwater vegetation. Frontiers in Environmental Science 10: 101924. https://doi.org/10.3389/fenvs.2022.901924.

    Article  Google Scholar 

  • Therneau, T. M., E. J. Atkinson, & others, 1997. An introduction to recursive partitioning using the RPART routines. Mayo Foundation: Technical report Vol 61. 60 pages.

  • United States Environmental Protection Agency (US EPA) Method 365.1, 1993a. Determination of Phosphorus by Semi‐automated Colorimetry Environmental Monitoring Systems Laboratory.

  • United States Environmental Protection Agency (US EPA) Method 365.2, 1993b. Determination of Nitrate‐nitrite Nitrogen by Automated Colorimetry. Environmental Monitoring Systems Laboratory.

  • Vadeboncoeur, Y., G. Peterson, M. J. Vander Zanden & J. Kalff, 2008. Benthic algal production across lake size gradients: interactions among morphometry, nutrient, and light. Ecology 89: 2542–2552. https://doi.org/10.1890/07-1058.1.

    Article  PubMed  Google Scholar 

  • Várbíró, G., J. Görgényi, B. Tóthmérész, J. Padisák, É. Hajnal & G. Borics, 2017. Functional redundancy modifies species-area relationship for freshwater phytoplankton. Ecology and Evolution 7: 9905–9913. https://doi.org/10.1002/ece3.3512.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan, L., X. Chen, Q. Deng, L. Yang, X. Li, J. Zhang, C. Song, Y. Zhou & X. Cao, 2019. Phosphorus strategy in bloom-forming cyanobacteria (Dolichospermum and Microcystis) and its role in their succession. Harmful Algae 84: 46–55. https://doi.org/10.1016/j.hal.2019.02.007.

    Article  CAS  PubMed  Google Scholar 

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems. Elsevier Academic Press. ISBN 0127447601, 9780127447605.

  • Wickham, H., W. Chang, & M.H. Wickham, 2016. Package ‘ggplot2’. Create elegant data visualisations using the grammar of graphics. Version 2.

  • Wijewardene, L., N. Wu, N. Fohrer & T. Riis, 2022. Epiphytic biofilms in freshwater and interactions with macrophytes: Current understanding and future directions. Aquatic Botany 176: 103467. https://doi.org/10.1016/j.aquabot.2021.103467.

    Article  Google Scholar 

  • Wilke, C.O., H. Wickham, & M.C.O. Wilke, 2019. Package ‘cowplot’. Streamlined plot theme and plot annotations for ‘ggplot2.

  • Wu, Q. L., G. Zwart, J. Wu, M. P. Kamst-van Agterveld, S. Liu & M. W. Hahn, 2007. Submersed macrophytes play a key role in structuring bacterioplankton community composition in the large, shallow, subtropical Taihu Lake, China. Environmental Microbiology 9: 2765–2774. https://doi.org/10.1111/j.1462-2920.2007.01388.x.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y., L. Li, L. Zheng, G. Dai, H. Ma, K. Shan, H. Wu, Q. Zhou & L. Song, 2016. Patterns of succession between bloom-forming cyanobacteria Aphanizomenon flos-aquae and Microcystis and related environmental factors in large, shallow Dianchi Lake, China. Hydrobiologia 765: 1–13. https://doi.org/10.1007/s10750-015-2392-0.

    Article  Google Scholar 

  • Yan, L., & M.L. Yan, 2021. Package ‘ggvenn’.

  • Yang, Y., H. Niu, L. Xiao, Q. Lin, B.-P. Han & L. Naselli-Flores, 2018. Spatial heterogeneity of spring phytoplankton in a large tropical reservoir: could mass effect homogenize the heterogeneity by species sorting? Hydrobiologia 819: 109–122. https://doi.org/10.1007/s10750-018-3651-7.

    Article  CAS  Google Scholar 

  • Zhang, M., Y. Zhang, Z. Yang, L. Wei, W. Yang, C. Chen & F. Kong, 2016. Spatial and seasonal shifts in bloom-forming cyanobacteria in Lake Chaohu: Patterns and driving factors: Shifts in bloom-forming cyanobacteria. Phycological Research 64: 44–55. https://doi.org/10.1111/pre.12112.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Water Agency of Loire Bretagne for co-funding the two-year project, while a European grant co-funded one of the two years (FEDER grant 2017-EX002533). The authors are thankful to the National Society of Nature protection (SNPN) and to the Syndicat du Bassin versant de Grand-Lieu, in charge of Lake and its drainage basin management. We thank Viktória B-Béres and two anonymous referees for helpful comments on an earlier version of the manuscript.

Funding

The study was supported by a research grant co-funded by the Water Agency of Loire Bretagne and European funds (PO Interrégional FEDER bassin de la Loire n° 2017-EX002533).

Author information

Authors and Affiliations

Authors

Contributions

AP obtained the funding. SMa, AP, SL, GB and J-MG performed the field sampling. ML and SMo performed phytoplankton identification and counting. SMa and SL performed zooplankton identification and counting. AP performed the data analyses and statistics. AP and CP wrote the manuscript, with substantial contributions from all authors.

Corresponding author

Correspondence to Alexandrine Pannard.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Viktória B-Béres, Luigi Naselli-Flores, Judit Padisák & Gábor Borics / Trait-Based Approaches in Micro-Algal Ecology

Supplementary Information

Below is the link to the electronic supplementary material.

Figure S1.

Boxplots of species abundances depending on habitats (green, M; blue, OW). Kruskall-Wallis tests: *** P<0.001; ** P<0.01; * P<0.05. Boxplots, distribution of each parameter, with five summary statistics: the median, the first and third quartiles, the median ± 1.5 * IQR (corresponding to the inter-quartile range, i.e., the distance between the first and third quartiles). Data outside the 1.5*IQR interval (outliers) are plotted individually. (TIFF 33976 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pannard, A., Massé, S., Llopis, S. et al. Rooted floating-leaf macrophytes structure the coexistence of different phytoplankton assemblages within a shallow lake. Hydrobiologia 851, 915–939 (2024). https://doi.org/10.1007/s10750-023-05366-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05366-5

Keywords

Navigation