Skip to main content
Log in

Drought drives fish disassembling in a Neotropical coastal plain

  • EFFECTS OF CHANGES IN SALINITY
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

With the aim to assess how environmental heterogeneity affect fish assembly patterns, we evaluated species co-occurrence and nestedness in 16 lentic environments in a drying coastal plain of Southeast Brazil. We calculated the frequency of co-occurrence and nestedness for 13 quarterly campaigns exclusively for fish species tolerant to a narrow range of low water salinity (stenohaline) and to wider range of water salinity (euryhaline) and for all species together, and assessed its significance with null models. We employed a Principal Component Analysis (PCA) to explore temporal trends in physical and chemical parameters of water and to detect those that most influenced environmental heterogeneity. Linear regressions assessed the potential effect of each parameter that most influenced the PCA on co-occurrence. Few campaigns presented nonrandom patterns of community composition, and only for euryhaline or for all species considered together. Communities shifted to anti-nested and negative species co-occurrence with the increase of environmental heterogeneity. Parameters related to desiccation (salinity and depth) affected euryhaline species co-occurrence. Together, these results revealed group-dependent responses to drought according to physiological tolerances. This study improves our understanding of how the predicted increase in precipitation anomalies may disassembled aquatic communities of coastal plains in the face of climatic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source: Station Campos dos Goytacazes (INMET, 2014). The dashed line in a represents the historical average of annual accumulated precipitation of the last 50 years

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Almeida-Neto, M., P. R. Guimaraes Jr. & T. M. Lewinsohn, 2007. On nestedness analyses: rethinking matrix temperature and anti-nestedness. Oikos 116: 716–722. https://doi.org/10.1111/j.2007.0030-1299.15803.x.

    Article  Google Scholar 

  • Alvares, C. A., J. L. Stape, P. C. Sentelhas, J. L. M. Gonçalves & G. Sparovek, 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711–728. https://doi.org/10.1127/0941-2948/2013/0507.

    Article  Google Scholar 

  • Alves, A. T., D. K. Petsch & F. Barros, 2020. Drivers of benthic metacommunity structure along tropical estuaries. Scientific Reports 10: 1739. https://doi.org/10.1038/s41598-020-58631-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amorim, P. J., 2018. Jenynsia lineata species complex, revision and new species description (Cyprinodontiformes: Anablepidae). Journal of Fish Biology 92: 1312–1332. https://doi.org/10.1111/jfb.13587.

    Article  Google Scholar 

  • Azeria, E. T., J. Ibarzabal & C. Hébert, 2012. Effects of habitat characteristics and interspecific interactions on co-occurrence patterns of saproxylic beetles breeding in tree boles after forest fire: null model analyses. Oecologia 168: 1123–1135. https://doi.org/10.1007/s00442-011-2180-0.

    Article  PubMed  Google Scholar 

  • Bascompte, J., P. Jordano, C. J. Melián & J. M. Olesen, 2003. The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences 100: 9383–9387. https://doi.org/10.1073/pnas.1633576100.

    Article  CAS  Google Scholar 

  • Blanchet, F. G., K. Cazelles & D. Gravel, 2020. Co-occurrence is not evidence of ecological interactions. Ecology Letters 23: 1050–1063. https://doi.org/10.1111/ele.13525.

    Article  PubMed  Google Scholar 

  • Boet, O., X. Arnan & J. Retana, 2019. The role of environmental vs. biotic filtering in the structure of European ant communities: a matter of trait type and spatial scale. PLoS ONE 15: e0228625. https://doi.org/10.1371/journal.pone.0228625.

    Article  CAS  Google Scholar 

  • Boschilia, S. M., E. F. Oliveira & S. M. Thomaz, 2008. Do aquatic macrophytes co-occur randomly? An analysis of null models in a tropical foodplain. Oecologia 156: 203–214. https://doi.org/10.1007/s00442-008-0983-4.

    Article  PubMed  Google Scholar 

  • Caliman, A., L. S. Carneiro, J. M. Santangelo, R. D. Guariento, A. P. F. Pires, A. L. Suhett, L. B. Quesado, V. Scofield, E. S. Fonte, P. M. Lopes, L. F. Sanches, F. D. Azevedo, C. C. Marinho, R. L. Bozelli, F. A. Esteves & V. F. Farjalla, 2010. Temporal coherence among tropical coastal lagoons: a search for patterns and mechanisms. Brazilian Journal of Biology 70: 803–814. https://doi.org/10.1590/S1519-69842010000400011.

    Article  CAS  Google Scholar 

  • Calviño, P. & F. Alonso, 2016. First record of the genus Jenynsia from marine water on the coast of Punta del Este, Maldonado, Uruguay (Cyprinodontiformes: Anablepidae). Journal of Fish Biology 88: 1236–1240. https://doi.org/10.1111/jfb.12895.

    Article  PubMed  Google Scholar 

  • Camara, E. M., E. P. Caramaschi, F. Di Dario & A. C. Petry, 2018. Short-term changes in two tropical coastal lagoons: effects of sandbar openings on fish assemblages. Journal of Coastal Research 341: 90–105. https://doi.org/10.2112/JCOASTRES-D-16-00026.1.

    Article  Google Scholar 

  • Canavero, A., D. Hernández, M. Zarucki & M. Arim, 2014. Patterns of co-occurrences in a killifish metacommunity are more related with body size than with species identity. Austral Ecology 39: 455–461. https://doi.org/10.1111/aec.12103.

    Article  Google Scholar 

  • Costa, C. L. N., S. I. Perez, J. Louvise, C. H. Tonhati, R. B. G. Clemente-Carvalho, A. C. Petry & S. F. dos Reis, 2019. Demographic expansion and contraction in a Neotropical fish during the Lates Pleistocene-Holocene. Open Journal of Statistics 9: 470–483. https://doi.org/10.4236/ojs.2019.94032.

    Article  Google Scholar 

  • D’Amen, M., H. K. Mod, N. J. Gotelli & A. Guisan, 2018. Disentangling biotic interactions, environmental filters, and dispersal limitation as drivers of species co-occurrence. Ecography 41: 1233–1244. https://doi.org/10.1111/ecog.03148.

    Article  Google Scholar 

  • De Pinna, M. C. C., 2006. Diversity of tropical fishes. In Val, A. L., V. M. F. de Almeida-Val & D. J. Randall (eds), Fish Physiology: The Physiology of Tropical Fishes Elsevier, New York: 47–84.

    Google Scholar 

  • Diamond, J. M., 1975. Assembly of species communities. In Cody, M. L. & J. M. Diamond (eds), Ecology and Evolution of Communities Harvard University Press, Cambridge: 342–444.

    Google Scholar 

  • Fayle, T. M. & A. Manica, 2010. Reducing over-reporting of deterministic co-occurrence patterns in biotic communities. Ecological Modelling 221: 2237–2242. https://doi.org/10.1016/j.ecolmodel.2010.06.013.

    Article  Google Scholar 

  • Fortuna, M. A., D. B. Stouffer, J. M. Olesen, P. Jordano, D. Mouillot, B. R. Krasnov, R. Poulin & J. Bascompte, 2010. Nestedness versus modularity in ecological networks: two sides of the same coin? Journal of Animal Ecology 79: 811–817. https://doi.org/10.1111/j.1365-2656.2010.01688.x.

    Article  PubMed  Google Scholar 

  • Froese, R. & D. Pauly, 2021. FishBase. World Wide Web Electronic Publication [available on internet at www.fishbase.org].

  • Garcia, A. M., M. B. Raseira, J. P. Vieira, K. O. Winemiller & A. M. Grimm, 2003a. Spatiotemporal variation in shallow-water freshwater fish distribution and abundance in a large subtropical coastal lagoon. Environmental Biology of Fishes 68: 215–228. https://doi.org/10.1023/A:1027366101945.

    Article  Google Scholar 

  • Garcia, A. M., J. P. Vieira & K. O. Winemiller, 2003b. Effects of 1997–1998 El Niño on the dynamics of the shallow-water fish assemblage of the Patos Lagoon Estuary (Brazil). Estuarine, Coastal and Shelf Science 57: 489–500. https://doi.org/10.1016/S0272-7714(02)00382-7.

    Article  Google Scholar 

  • Gotelli, N. J., 2000. Null model analysis of species co-occurrence patterns. Ecology 81: 2606–2621. https://doi.org/10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2.

    Article  Google Scholar 

  • Gotelli, N. J. & D. J. McCabe, 2002. Species co-occurrence: a meta-analysis of J. T. Diamond’s assembly rules model. Ecology 83: 2091–2096. https://doi.org/10.1890/0012-9658(2002)083[2091:SCOAMA]2.0.CO;2.

    Article  Google Scholar 

  • Gotelli, N. J., E. M. Hart & A. Ellison, 2015. EcoSimR: null model analysis for ecological data. R package version 0.1.0 [available on internet at https://doi.org/10.5281/zenodo.16522].

  • Guimarães, T. F. R., S. M. Hartz & F. G. Becker, 2014. Lake connectivity and fish species richness in southern Brazilian coastal lakes. Hydrobiologia 740: 207–217. https://doi.org/10.1007/s10750-014-1954-x.

    Article  Google Scholar 

  • Guimarães, T. F. R., A. C. Petry, S. M. Hartz & F. G. Becker, 2021. Influence of past and current factors on the beta diversity of coastal lagoon fish communities in South America. Journal of Biogeography 48: 639–649. https://doi.org/10.1111/jbi.14029.

    Article  Google Scholar 

  • Gutierre, S. M. M., J. R. S. Vitule, C. A. Freire & V. Prodocimo, 2013. Physiological tools to predict invasiveness and spread via estuarine bridges: tolerance of Brazilian native and worldwide introduced freshwater fishes to increased salinity. Marine and Freshwater Research 65: 425–436. https://doi.org/10.1071/MF13161.

    Article  Google Scholar 

  • Heino, J., 2013. Does dispersal ability affect the relative importance of environmental control and spatial structuring of littoral macroinvertebrate communities? Oecologia 171: 971–980. https://doi.org/10.1007/s00442-012-2451-4.

    Article  PubMed  Google Scholar 

  • Hollanda-Carvalho, P., J. I. Sánchez-Botero, E. Pellegrini-Caramaschi & R. L. Bozelli, 2003. Temporal variation of fish community richness in coastal lagoons of the Restinga de Jurubatiba National Park, Rio de Janeiro, Brazil. Acta Limnologica Brasiliensia 15: 31–40.

    Google Scholar 

  • Horner-Devine, M. C., J. M. Silver, M. A. Leibold, B. J. M. Bohannan, R. K. Colwell, J. A. Fuhrman, J. L. Green, C. R. Kuske, J. B. H. Martiny, G. Muyzer, L. Øvreås, A.-L. Reysenbach & V. H. Smith, 2007. A comparison of taxon co-occurrence patterns for macro- and microorganisms. Ecology 88: 1345–1353. https://doi.org/10.1890/06-0286.

    Article  PubMed  Google Scholar 

  • INMET, 2014. Instituto Nacional de Meteorologia [available on internet at https://inmet.gov.br/].

  • IPCC, 2021. Climate change 2021: the physical science basis. In Stocker, T., D. Qin & G.-K. Plattner (eds), Working Group I Contribution to the IPCC 6th Assessment Report – Changes to the Underlying Scientific/Technical Assessment [available on internet at https://www.ipcc.ch/report/ar6/wg1/].

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. In Dodge, D. P. (ed.), Proceedings of the International Large River Symposium. Canadian Special Publications of Fisheries and Aquatic Sciences 106: 110–127.

  • Keddy, P. & E. Weiher, 1999. Introduction: the scope and goals of research on assembly rules. In Weiher, E. & P. Keddy (eds), Ecological Assembly Roles: Perspectives, Advances, Retreats Cambridge University Press, Cambridge: 1–20.

    Google Scholar 

  • Legendre, P. & L. Legendre, 2012. Numerical Ecology, Elsevier, Amsterdam:

    Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x.

    Article  Google Scholar 

  • MacArthur, R. H. & E. O. Wilson, 1967. The Theory of Island Biogeography, Princeton University Press, Princeton:

    Google Scholar 

  • Macedo-Soares, P. H. M., A. C. Petry, V. F. Farjalla & E. P. Caramaschi, 2010. Hydrological connectivity in coastal inland systems: lessons from a Neotropical fish metacommunity. Ecology of Freshwater Fish 19: 7–18. https://doi.org/10.1111/j.1600-0633.2009.00384.x.

    Article  Google Scholar 

  • Marquet, P. A., M. Fernandéz, S. A. Navarrete & C. Valdovinos, 2004. Diversity emerging: toward a deconstruction of biodiversity patterns. In Lomolino, M. V. & L. R. Heaney (eds), Frontiers of Biogeography: New Directions in the Geography of Nature Sinauer Associates, Sunderland: 191–209.

    Google Scholar 

  • McCreadie, J. W. & C. R. Bedwell, 2013. Patterns of co-occurrence of stream insects and an examination of a causal mechanism: ecological checkerboard or habitat checkerboard? Insect Conservation and Diversity 6: 105–113. https://doi.org/10.1111/j.1752-4598.2012.00191.x.

    Article  Google Scholar 

  • Mouchet, M. A., M. D. M. Burns, A. M. Garcia, J. P. Vieira & D. Mouillot, 2013. Invariant scaling relationship between functional dissimilarity and co-occurrence in fish assemblages of the Patos Lagoon estuary (Brazil): environmental filtering consistently overshadows competitive exclusion. Oikos 122: 247–257. https://doi.org/10.1111/j.1600-0706.2012.20411.x.

    Article  Google Scholar 

  • Mouillot, D., O. Dumay & J. A. Tomasini, 2007. Limiting similarity, niche filtering and functional diversity in coastal lagoon fish communities. Estuarine, Coastal and Shelf Science 71: 443–456. https://doi.org/10.1016/j.ecss.2006.08.022.

    Article  Google Scholar 

  • Myers, G. S., 1938. Fresh-water fishes and West Indian zoogeography. Annual Report of the Board of Regents of the Smithsonian Institution 55: 561–572.

    Google Scholar 

  • Nichols, J. T., 1928. Fishes from the White Nile. American Museum Novitates.

  • Nielsen, D. L. & M. A. Brock, 2009. Modified water regime and salinity as a consequence of climate change: prospects for wetlands of Southern Australia. Climatic Change 95: 523–533. https://doi.org/10.1007/s10584-009-9564-8.

    Article  CAS  Google Scholar 

  • Nunes, L. T., A. C. Siqueira, I. Cord, B. M. Ford, A. M. R. Liedke, C. E. L. Ferreira & S. R. Floeter, 2020. The influence of species abundance, diet and phylogenetic affinity on the co-occurrence of butterflyfishes. Marine Biology 167: 107. https://doi.org/10.1007/s00227-020-03725-7.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson & H. Wagner, 2019. vegan: Community Ecology Package. R package version 2.5-7 [available on internet at https://cran.r-project.org/package=vegan].

  • Ortega, J. C. G., R. M. Dias, A. C. Petry, E. F. Oliveira & A. A. Agostinho, 2016. Spatio-temporal organization patterns in the fish assemblages of a Neotropical floodplain. Hydrobiologia 745: 31–41. https://doi.org/10.1007/s10750-014-2089-9.

    Article  Google Scholar 

  • Patterson, B. D. & W. Atmar, 1986. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biological Journal of the Linnean Society 28: 65–82. https://doi.org/10.1111/j.1095-8312.1986.tb01749.x.

    Article  Google Scholar 

  • Petry, A. C., T. F. R. Guimarães, F. M. Vasconcellos, S. M. Hartz, F. G. Becker, R. S. Rosa, G. Goyenola, E. P. Caramaschi, J. M. D. de Astarloa, L. M. Sarmento-Soares, J. P. Vieira, A. M. Garcia, F. T. de Mello, F. A. G. de Melo, M. Meerhoff, J. L. Attayde, R. F. Menezes, N. Mazzeo & F. Di Dario, 2016. Fish composition and species richness in eastern South American coastal lagoons: additional support for the freshwater ecoregions of the world. Journal of Fish Biology 89: 280–314. https://doi.org/10.1111/jfb.13011.

    Article  CAS  PubMed  Google Scholar 

  • Petry A. C., B. C. Felice, J. I. Sánchez-Bottero, M. P. Araujo, E. M. Camara, J. V. P. Souza, A. V. L. Santos, C. E. V. Santos, E. A. Guimarães, J. M. S. Souza, T. F. R. Guimarães, M. M. Mincarone, F. Di Dario, L. G. Fischer, P. H. Carvalho, B. V. G. Forte, A. G. D. P. Monteiro, M. P. Figueiredo-Barros, M. M. Molisani, F. A. Esteves & E. M. Caramaschi, In Press. Respostas da ictiofauna do Sítio PELD-RLaC ao regime de precipitação: uma síntese de 20 anos de monitoramento. In Gonçalves P. R., A. C. Petry, C. Braga, R. L. Martins & F. A. Esteves (eds), Dimensões Ecológicas, Geológicas e Humanas em Estudos de Longa-Duração no Parque Nacional da Restinga de Jurubatiba, Rio de Janeiro. Interciência, Rio de Janeiro: 87–112.

  • R Core Team, 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/.

  • Reboita, M. S., C. A. C. Kuki, V. H. Marrafon, C. A. de Souza, G. W. S. Ferreira, T. Teodoro & J. W. M. Lima, 2022. South America climate change revealed through climate indices projected by GCMs and Eta-RCM ensembles. Climate Dynamics 58: 459–485. https://doi.org/10.1007/s00382-021-05918-2.

    Article  Google Scholar 

  • Rius, B. F., A. C. Petry, R. B. Langerhans, M. P. Figueiredo-Barros, R. L. Bozelli, L. K. Honda, C. C. Nova & M. S. Araújo, 2019. Correlates of life-history variation in the livebearing fish Poecilia vivipara (Cyprinodontiformes: Poeciliidae) inhabiting an environmental gradient. Biological Journal of the Linnean Society 126: 436–446. https://doi.org/10.1093/biolinnean/bly208.

    Article  Google Scholar 

  • Sanders, N. J., N. J. Gotelli & N. E. Heller, 2003. Community disassembly by an invasive species. Proceedings of the National Academy of Science of the United States of America 100: 2474–2477. https://doi.org/10.1073/pnas.0437913100.

    Article  CAS  Google Scholar 

  • Santi, F., A. C. Petry, M. Plath & R. Riesch, 2020. Phenotypic differentiation in a heterogeneous environment: morphological and life-history responses to ecological gradients in a livebearing fish. Journal of Zoology 310: 10–23. https://doi.org/10.1111/jzo.12720.

    Article  Google Scholar 

  • Shin, Y., E.-J. Lee, Y.-J. Jeon, J. Hur & N.-H. Oh, 2016. Hydrological changes of DOM composition and biodegradability of rivers in temperate monsoon climates. Journal of Hydrology 540: 538–548. https://doi.org/10.1016/j.jhydrol.2016.06.004.

    Article  CAS  Google Scholar 

  • Stone, L. & A. Roberts, 1990. The checkerboard score and species distributions. Oecologia 85: 74–79. https://doi.org/10.1007/BF00317345.

    Article  PubMed  Google Scholar 

  • Suguio, K. & L. Martin, 1996. The role of neotectonics in the evolution of the Brazilian coast. Geonomos 4: 45–53. https://doi.org/10.18285/geonomos.v4i2.200.

    Article  Google Scholar 

  • Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13. https://doi.org/10.1007/s10750-006-0285-y.

    Article  Google Scholar 

  • Ulrich, W., 2004. Species co-occurrences and neutral models: reassessing J. M. Diamond’s assembly rules. Oikos 107: 603–609. https://doi.org/10.1111/j.0030-1299.2004.12981.x.

    Article  Google Scholar 

  • Ulrich, W. & N. J. Gotelli, 2007. Disentangling community patterns of nestedness and species co-occurrence. Oikos 116: 2053–2061. https://doi.org/10.1111/j.2007.0030-1299.16173.x.

    Article  Google Scholar 

  • Vázquez, D. P., C. J. Melian, N. M. Williams, N. Blüthgen, B. R. Krasnov & R. Poulin, 2007. Species abundance and asymmetric interaction strength in ecological networks. Oikos 116: 1120–1127. https://doi.org/10.1111/j.0030-1299.2007.15828.x.

    Article  Google Scholar 

  • Weiher, E. & P. Keddy, 1999. Ecological Assembly Rules: Perspectives, Advances, Retreats, Cambridge University Press, Cambridge:

    Book  Google Scholar 

  • Zuur, A. F., E. N. Leno, N. J. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R, Springer, New York:

    Book  Google Scholar 

  • Zuur, A. F., E. N. Leno & C. S. Elpick, 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1: 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x.

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to technicians and several undergraduate and graduate students from the Universidade Federal do Rio de Janeiro, for their help in the fieldwork and processing of the samples, and to M.P. de Araujo for drawing the Fig. 1. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil CAPES) – Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (314865/2009-8; 558270/2009-3) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (E-26/111.738/2012, E-26/200.005/2018).

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001 (AVLS and BCF), Conselho Nacional de Desenvolvimento Científico e Tecnológico (314865/2009-8; 558270/2009-3) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (E-26/111.738/2012, E-26/200.005/2018).

Author information

Authors and Affiliations

Authors

Contributions

AVLS, BCF, JCGO, MPF-B and ACP contributed to the study conception and design. Data collection were performed by BCF and ACP and analyses were performed by all authors. The first draft of the manuscript was written by AVLS and all authors contributed on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ana Cristina Petry.

Ethics declarations

Conflict of interest

All authors acknowledge no conflict of interest.

Ethical approval

Collection permit SISBIO 33278.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Erik Jeppesen, Miguel Cañedo-Argüelles, Sally Entrekin, Judit Padisák & S.S.S. Sarma / Effects of induced changes in salinity on inland and coastal water ecosystems

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 kb)

10750_2023_5298_MOESM2_ESM.tiff

Supplementary file2 (TIFF 1329 kb)—Figure S1 Frequency of hydrological connectivity of the 16 lentic environments of the Restinga de Jurubatiba National Park, in the period between May 2010 and May 2013.

10750_2023_5298_MOESM3_ESM.tiff

Supplementary file3 (TIFF 1706 kb)—Figure S2 Pairwise relationships between the environmental variables recorded the 16 lentic environments of the Restinga de Jurubatiba National Park, in the period between May 2010 and May 2013. Along, below and above diagonal, respectively, the histogram and density function of each variable, the bivariate scatterplots with the Pearson correlation value with the significance level are shown (*P < 0.05; **P < 0.01; ***P < 0.001).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, A.V.L., Felice, B.C., Ortega, J.C.G. et al. Drought drives fish disassembling in a Neotropical coastal plain. Hydrobiologia 850, 4589–4608 (2023). https://doi.org/10.1007/s10750-023-05298-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05298-0

Keywords

Navigation