Skip to main content
Log in

A “pulse-stairstep” longitudinal pattern of larval fish assemblages in a channelized floodplain river downstream of a dam: dominant influences of major tributaries with a “confluence refuge concept”

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We investigated larval fish assemblages in the Yangtze River downstream of the Three Gorges Dam to test the influence of tributary inputs on the longitudinal recovery pattern of the assemblages from negative impacts of dam regulation. Larval fish assemblages showed a “pulse-stairstep” longitudinal pattern. Specifically, two “pulses” of dramatically increased abundance of larval fish occurred immediately downstream of the confluences of Dongting Lake and Hanjiang River. Three “stairsteps” of larval fish abundance were observed, which were separated by the confluences of Hanjiang River and the Poyang Lake watershed inputs. Larval fish abundance kept relatively constant within a stairstep and increased apparently in the downstream direction among the stairsteps. While fish assemblages upstream of the confluence of Hanjiang River were highly variable, whereas those downstream were relatively similar. Our results demonstrated that tributary inputs shaped the longitudinal recovery pattern of the larval fish assemblages. We proposed the “confluence refuge concept” suggesting that confluence areas provide refuges and nursery grounds for fishes in the suboptimal river section negatively impacted by the dam. Hence, conserving the confluence areas of major tributaries and maintaining lateral connectivity of floodplain lakes are critical for fishery resource enhancement in such dam-regulated and highly channelized floodplain rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Benda, L., K. Andras, D. Miller & P. Bigelow, 2004. Confluence effects in rivers: interactions of basin scale, network geometry, and disturbance regimes. Water Resources Research 40: 1–15.

    Article  Google Scholar 

  • Boddy, N. C., D. J. Booker & A. R. McIntosh, 2019. Confluence configuration of river networks controls spatial patterns in fish communities. Landscape Ecology 34: 187–201.

    Article  Google Scholar 

  • Braaten, P. J. & C. S. Guy, 1999. Relations between physicochemical factors and abundance of fishes in tributary confluences of the lower channelized Missouri River. Transactions of the American Fisheries Society 128: 1213–1221.

    Article  Google Scholar 

  • Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.

    Article  PubMed  Google Scholar 

  • Burgess, O. T., W. E. Pine & S. J. Walsh, 2013. Importance of floodplain connectivity to fish populations in the Apalachicola River, Florida. River Research and Applications 29: 718–733.

    Article  Google Scholar 

  • Cao, W., J. Chang, Y. Qiao & Z. Duan, 2007. Fish Resources of Early Life History Stages in Yangtze River, Water Power Press, Beijing, China: (in Chinese).

    Google Scholar 

  • Chambers, R. C. & E. A. Trippel, 1997. Early Life History and Recruitment in Fish Populations, Chapman and Hall, London, UK:

    Book  Google Scholar 

  • Cheng, F., W. Li, L. Castello, B. R. Murphy & S. G. Xie, 2015. Potential effects of dam cascade on fish: lessons from the Yangtze River. Reviews in Fish Biology and Fisheries 25: 569–585.

    Article  Google Scholar 

  • Czeglédi, I., P. Sály, P. Takács, A. Dolezsai, S. A. Nagy & T. Erős, 2016. The scales of variability of stream fish assemblages at tributary confluences. Aquatic Sciences 78: 641–654.

    Article  Google Scholar 

  • Doretto, A., E. Piano & C. E. Larson, 2020. The River Continuum Concept: lessons from the past and perspectives for the future. Canadian Journal of Fisheries and Aquatic Sciences 77: 1853–1864.

    Article  Google Scholar 

  • Ellis, L. E. & N. E. Jones, 2013. Longitudinal trends in regulated rivers: a review and synthesis within the context of the serial discontinuity concept. Environmental Reviews 21: 136–148.

    Article  Google Scholar 

  • Freedman, J. A., B. D. Lorson, R. B. Taylor, R. F. Carline & J. R. Stauffer, 2014. River of the dammed: longitudinal changes in fish assemblages in response to dams. Hydrobiologia 727: 19–33.

    Article  CAS  Google Scholar 

  • Gao, L., F. Cheng, Y. Q. Song, W. Jiang, G. P. Feng, Y. M. Luo & S. G. Xie, 2018. Patterns of larval fish assemblages along the direction of freshwater input within the southern branch of the Yangtze Estuary, China: implications for conservation. Journal of Freshwater Ecology 33: 97–114.

    Article  Google Scholar 

  • Górski, K., J. J. De Leeuw, H. V. Winter, D. A. Vekhov, A. E. Minin, A. D. Buijse & L. A. J. Nagelkerke, 2011. Fish recruitment in a large, temperate floodplain: the importance of annual flooding, temperature and habitat complexity: fish recruitment in a large, temperate floodplain. Freshwater Biology 56: 2210–2225.

    Article  Google Scholar 

  • Guzy, J. C., E. A. Eskew, B. J. Halstead & S. J. Price, 2018. Influence of damming on anuran species richness in riparian areas: a test of the serial discontinuity concept. Ecology and Evolution 8: 2268–2279.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanks, R. D., 2020. Dams: Anthrome Enablers Reference Module in Earth Systems and Environmental Sciences. Elsevier: https://linkinghub.elsevier.com/retrieve/pii/B9780124095489120354.

  • Hanks, R. D. & K. J. Hartman, 2019. Evaluation of the influences of dam release types, land use, and habitat affecting abundance, richness, diversity, and community structure of larval and juvenile fish. Canadian Journal of Fisheries and Aquatic Sciences 76: 1388–1397.

    Article  Google Scholar 

  • Harper, M., T. Rytwinski, J. J. Taylor, J. R. Bennett, K. E. Smokorowski, J. D. Olden, K. D. Clarke, T. Pratt, N. Fisher, A. Leake & S. J. Cooke, 2022. How do changes in flow magnitude due to hydropower operations affect fish abundance and biomass in temperate regions? A systematic review. Environmental Evidence 11: 14.

    Article  Google Scholar 

  • Institute of Hydrobiology, 1976. Fishes in the Yangtze River, Science Press, Beijing: ((in Chinese)).

    Google Scholar 

  • Jones, N. E. & B. J. Schmidt, 2018. Influence of tributaries on the longitudinal patterns of benthic invertebrate communities. River Research and Applications 34: 165–173.

    Article  Google Scholar 

  • Junk, W. J., P. B. Bayley, & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Proceedings of the International Large River Symposium (LARS). Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.

  • King, A. J., 2004. Ontogenetic patterns of habitat use by fishes within the main channel of an Australian floodplain river. Journal of Fish Biology 65: 1582–1603.

    Article  Google Scholar 

  • Kinsolving, A. D. & M. B. Bain, 1993. Fish assemblage recovery along a riverine disturbance gradient. Ecological Applications 3: 531–544.

    Article  PubMed  Google Scholar 

  • Kowarik, A. & M. Templ, 2016. Imputation with the R package VIM. Journal of Statistical Software 74: 1–16.

    Article  Google Scholar 

  • Lehner, B., C. R. Liermann, C. Revenga, C. Vörösmarty, B. Fekete, P. Crouzet, P. Döll, M. Endejan, K. Frenken, J. Magome, C. Nilsson, J. C. Robertson, R. Rödel, N. Sindorf & D. Wisser, 2011. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment 9: 494–502.

    Article  Google Scholar 

  • Liang, Z., B. Yi & Z. Yu, 2019. A Photographic Guide to Early Development of Fish in Rivers, Guangdong Science & Technology Press, Guangzhou: (in Chinese).

    Google Scholar 

  • Makrakis, M. C., A. Refatti, H. Keckeis, P. S. Silva, L. Assumpção, E. A. L. Kashiwaqui, P. E. Gamaro & S. Makrakis, 2021. Importance of a turbulent river section below a giant waterfall for fish spawning: Indications from drift and dispersion patterns of early life stages. Ecohydrology 15: e2356.

    Article  Google Scholar 

  • Meng, Q., L. Gao, D. Q. Wang, X. B. Duan, S. Liu, D. Q. Chen, M. L. Yang & Y. H. Zheng, 2020. The early-stage fish resources and effects of ecological regulation on fish reproduction at the Jianli section of the Yangtze River. Journal of Fishery Sciences of China 27: 824–833 (in Chinese with English Abstract).

    Google Scholar 

  • Mims, M. C. & J. D. Olden, 2012. Life history theory predicts fish assemblage response to hydrologic regimes. Ecology 93: 35–45.

    Article  PubMed  Google Scholar 

  • Nannini, M. A., J. Goodrich, J. M. Dettmers, D. A. Soluk & D. H. Wahl, 2012. Larval and early juvenile fish dynamics in main channel and backwater lake habitats of the Illinois River ecosystem. Ecology of Freshwater Fish 21: 499–509.

    Article  Google Scholar 

  • Nilsson, C., A. Catherine, D. Mats. Reidy & C. Revenga, 2005. Fragmentation and flow regulation of the world’s large river systems. Science 308: 405–408.

    Article  CAS  PubMed  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, & H. Wagner, 2020. vegan: Community ecology package. https://CRAN.R-project.org/package=vegan.

  • Olden, J. D., N. L. Poff & K. R. Bestgen, 2006. Life-history strategies predict fish invasions and extirpations in the Colorado River Basin. Ecological Monographs 76: 25–40.

    Article  Google Scholar 

  • Perkin, J. S., N. E. Knorp, T. C. Boersig, A. E. Gebhard, L. A. Hix & T. C. Johnson, 2017. Life history theory predicts long-term fish assemblage response to stream impoundment. Canadian Journal of Fisheries and Aquatic Sciences 74: 228–239.

    Article  CAS  Google Scholar 

  • Pinkas, L., S. O. Malcolm & L. K. I. Ingrid, 1970. Food habits of albacore, Bluefin tuna, and bonito in California waters. Dept. of Fish and Game 152: 1–105.

    Google Scholar 

  • Pracheil, B. M., P. B. McIntyre & J. D. Lyons, 2013. Enhancing conservation of large-river biodiversity by accounting for tributaries. Frontiers in Ecology and the Environment 11: 124–128.

    Article  Google Scholar 

  • Pracheil, B. M., J. Lyons, E. J. Hamann, P. H. Short & P. B. McIntyre, 2019. Lifelong population connectivity between large rivers and their tributaries: a case study of shovelnose sturgeon from the Mississippi and Wisconsin rivers. Ecology of Freshwater Fish 28: 20–32.

    Article  Google Scholar 

  • Preece, R. M. & H. A. Jones, 2002. The effect of Keepit Dam on the temperature regime of the Namoi River, Australia. River Research and Applications 18: 397–414.

    Article  Google Scholar 

  • R Core Team, 2020. R: A language and environment for statistical computing. Vienna, Austria, https://www.R-project.org/.

  • Randklev, C. R., 2016. The influence of stream discontinuity and life history strategy on mussel community structure: a case study from the Sabine River, Texas. Hydrobiologia 770: 173–191.

    Article  Google Scholar 

  • Rice, S. P., M. T. Greenwood & C. B. Joyce, 2001. Tributaries, sediment sources, and the longitudinal organisation of macroinvertebrate fauna along river systems. Canadian Journal of Fisheries and Aquatic Sciences 58: 824–840.

    Article  Google Scholar 

  • Rivaes, R. P., M. J. Feio, S. F. P. Almeida, C. Vieira, A. R. Calapez, A. Mortágua, D. Gebler, I. Lozanovska & F. C. Aguiar, 2021. Multi-biologic group analysis for an ecosystem response to longitudinal river regulation gradients. Science of the Total Environment 767: 144327.

    Article  CAS  PubMed  Google Scholar 

  • Rosa, G. R., G. N. Salvador, A. Bialetzki & G. B. Santos, 2018. Spatial and temporal distribution of ichthyoplankton during an unusual period of low flow in a tributary of the São Francisco River, Brazil. River Research and Applications 34: 69–82.

    Article  Google Scholar 

  • Sanches, P. V., T. M. Gogola, R. O. Silva, D. A. Topan, P. H. Santos Picapedra & P. A. Piana, 2020. Arms as areas for larval development of migratory fish species in a Neotropical reservoir and the influence of rainfall over abundances. Journal of Fish Biology 97: 1306–1316.

    Article  PubMed  Google Scholar 

  • Sá-Oliveira, J. C., J. E. Hawes, V. J. Isaac-Nahum & C. A. Peres, 2015. Upstream and downstream responses of fish assemblages to an eastern Amazonian hydroelectric dam. Freshwater Biology 60: 2037–2050.

    Article  Google Scholar 

  • Song, Y. Q., F. Cheng, B. R. Murphy & S. G. Xie, 2018. Downstream effects of the Three Gorges Dam on larval dispersal, spatial distribution, and growth of the four major Chinese carps call for reprioritizing conservation measures. Canadian Journal of Fisheries and Aquatic Sciences 75: 141–151.

    Article  Google Scholar 

  • Song, Y. Q., F. Cheng, P. Ren, Z. Wang & S. G. Xie, 2019. Longitudinal recovery gradients of drifting larval fish assemblages in the middle reach of the Yangtze River: impact of the Three Gorges Dam and conservation implementation. Canadian Journal of Fisheries and Aquatic Sciences 76: 2256–2267.

    Article  Google Scholar 

  • Stanford, J. A. & J. V. Ward, 2001. Revisiting the serial discontinuity concept. Regulated Rivers: Research & Management 17: 303–310.

    Article  Google Scholar 

  • Stoffels, R. J., P. Humphries, N. R. Bond & A. E. Price, 2022. Fragmentation of lateral connectivity and fish population dynamics in large rivers. Fish and Fisheries 23: 680–696.

    Article  Google Scholar 

  • Sun, G. Q., G. C. Lei, Y. Qu, C. X. Zhang & K. He, 2020. The operation of the Three Gorges Dam alters wetlands in the middle and lower reaches of the Yangtze River. Frontiers in Environmental Science 8: 576307.

    Article  Google Scholar 

  • Thornbrugh, D. J. & K. B. Gido, 2010. Influence of spatial positioning within stream networks on fish assemblage structure in the Kansas River basin, USA. Canadian Journal of Fisheries and Aquatic Sciences 67: 143–156.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan, C. R. Liermann & P. M. Davies, 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561.

    Article  PubMed  Google Scholar 

  • Ward, J. V. & J. Stanford, 1983. The Serial Discontinuity Concept of Lotic Ecosystems Dynamics of Lotic Ecosystems, Ann Arbor Science Publishers, Ann Arbor, MI:

    Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1995. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regulated Rivers: Research & Management 11: 105–119.

    Article  Google Scholar 

  • Wohl, E., 2018. Human Alterations of Rivers Sustaining River Ecosystems and Water Resources, Springer, Cham:, 59–104. https://doi.org/10.1007/978-3-319-65124-8_3.

    Book  Google Scholar 

  • Xie, S. G., Z. J. Li, J. S. Liu, S. Q. Xie, H. Z. Wang & B. R. Murphy, 2007. Fisheries of the Yangtze River show immediate impacts of the Three Gorges Dam. Fisheries 32: 343–344.

    Google Scholar 

  • Xiong, Y. J., J. Yin, K. T. Paw U, S. H. Zhao, G. Y. Qiu & Z. Liu, 2020. How the Three Gorges Dam affects the hydrological cycle in the mid-lower Yangtze River: a perspective based on decadal water temperature changes. Environmental Research Letters 15: 014002.

    Article  Google Scholar 

  • Young, P. S., J. J. Cech & L. C. Thompson, 2011. Hydropower-related pulsed-flow impacts on stream fishes: a brief review, conceptual model, knowledge gaps, and research needs. Reviews in Fish Biology and Fisheries 21: 713–731.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Key R&D Program of China (2021YFD1200305); Strategic Priority Research Program of the Chinese Academy of Sciences (XDA23040402); National Natural Science Foundation of China (31870398, 31570420).

Author information

Authors and Affiliations

Authors

Contributions

JC, FC, and SX conceived the ideas and designed the methodology; JC and ZW performed the investigation; JC, ZW, and YS analyzed the data; JC, FC, YS, and SX led the writing of the manuscript. All the authors contributed to the revisions and approved the final draft for publication.

Corresponding author

Correspondence to Fei Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Handling editor: Louise Chavarie

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Cheng, F., Wang, Z. et al. A “pulse-stairstep” longitudinal pattern of larval fish assemblages in a channelized floodplain river downstream of a dam: dominant influences of major tributaries with a “confluence refuge concept”. Hydrobiologia 850, 3981–3995 (2023). https://doi.org/10.1007/s10750-023-05281-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05281-9

Keywords

Navigation