Skip to main content

Advertisement

Log in

Influence of land use on the structure and functional diversity of aquatic insects in neotropical streams

  • STREAM ECOLOGY
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Although many studies show the negative impacts of agricultural activities on aquatic ecosystems, few relate functional and structural characteristics of the biota. We evaluate the structure and functional dynamics of aquatic insects in headwater streams with different degrees of land cover and in different hydrological periods, in a hydrographic basin where agriculture and livestock predominate. Three diversity indices were measured: functional richness (FRic), functional equitability (FEve) and functional dispersal (FDis), with the highest values recorded for Trichoptera, Diptera, Coleoptera and Odonata. From the results, the abundance was higher in the dry season and some families were exclusive to this period. In the rainy season, there was a decline in total abundance and richness of families and an increase of Diptera in urban streams. In rural streams, we registered an occurrence of Odonata, Coleoptera and EPT and a reduction of Diptera. The recorded data confirm that urbanization has negative effects on ecosystem functioning, since urban streams showed lower richness, dispersion and functional evenness. Furthermore, the increase in taxonomic diversity was accompanied by an increase in functional diversity, which reinforces the importance of the combined approach of functional and structural traits to better understand the impacts of anthropic changes in neotropical streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source Prepared by the author (2019)

Fig. 2
Fig. 3

Source Prepared by the author (2019)

Fig. 4

Source Prepared by the author (2019)

Similar content being viewed by others

Data availability

The authors declare that, upon request, the data used to carry out this article are available.

References

  • Aazami, J., H. Maghsodlo, S. S. Mira & H. Valikhani, 2020. Health evaluation of riverine ecosystems using aquatic macroinvertbrates: a case study of Mohammad-Abad River Iran. International Journal of Environmental Science and Technology 17: 2637–2644.

    Article  Google Scholar 

  • Akyildiz, G. K. & M. Duran, 2021. Evaluation of the impact of heterogeneous environmental pollutants on benthic macroinvertebrates and water quality by long-term monitoring of the buyuk menderes river basin. Environmental Monitoring and Assessment 193(5): 280.

    Article  CAS  PubMed  Google Scholar 

  • Amaral, H. M., P. C. H. B. Rocha & R. D. G. Alves, 2021. Effect of eucalyptus plantations on the taxonomic and functional structure of aquatic insect assemblages in Neotropical springs. Studies on Neotropical Fauna and Environment 1–12.

  • Archaimbault, V., P. Usseglio-Polatera, J. Garric, J. G. Wasson & M. Babut, 2010. Assessing pollution of toxic sediment in streams using bio-ecological traits of benthic macroinvertebrates. Freshwater Biology 55(7): 1430–1446.

    Article  CAS  Google Scholar 

  • Barbour, M. T., 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, US Environmental Protection Agency, Office of Water, Washington, DC:

    Google Scholar 

  • Benítez, A., G. Aragón, Y. González & M. Prieto, 2018. Functional traits of epiphytic lichens in response to forest disturbance and as predictors of total richness and diversity. Ecological Indicators 86: 18–26.

    Article  Google Scholar 

  • Brown, B. L., 2007. Habitat heterogeneity and disturbance influence patterns of community temporal variability in a small temperate stream. Hydrobiologia 586(1): 93–106.

    Article  Google Scholar 

  • Brown, L. E., K. Khamis, M. Wilkes, P. Blaen, J. E. Brittain, J. L. Carrivick & A. M. Milner, 2018. Functional diversity and community assembly of river invertebrates show globally consistent responses to decreasing glacier cover. Nature Ecology & Evolution 2(2): 325–333.

    Article  Google Scholar 

  • Cadotte, M. W., K. Carscadden & N. Mirotchnick, 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology 48(5): 1079–1087.

    Article  Google Scholar 

  • Carpenter, S. R., E. H. Stanley & Z. M. J. Vander, 2011. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annual Review of Environment and Resources 36: 75–99.

    Article  Google Scholar 

  • Carreño-Rocabado, G., M. Peña-Claros, F. Bongers, A. Alarcón, J. C. Licona & L. Poorter, 2012. Effects of disturbance intensity on species and functional diversity in a tropical forest. Journal of Ecology 100(6): 1453–1463.

    Article  Google Scholar 

  • Chapman, M. G. & T. J. Tolhurst, 2004. The relationship between invertebrate assemblages and bio-dependant properties of sediment in urbanized temperate mangrove forests. Journal of Experimental Marine Biology and Ecology 304(1): 51–73.

    Article  Google Scholar 

  • Charvet, S., A. Kosmala & B. Statzner, 1998. Biomonitoring through biological traits of benthic macroinvertebrates: perspectives for a general tool in stream management. Archiv Für Hydrobiologie 142: 415–432.

    Article  Google Scholar 

  • Cianciaruso, M. V., I. A. Silva & M. A. Batalha, 2009. Diversidades filogenética e funcional: novas abordagens para a Ecologia de comunidades. Biota Neotropica 9(3): 93–103.

    Article  Google Scholar 

  • Cíbik, J., P. Beracko, I. Krno, T. Lánczos, T. Navara & T. Derka, 2021. The taxonomical and functional diversity of three groups of aquatic insects in rheocrene karst springs are affected by different environmental factors. Limnologica 91: 125913.

    Article  Google Scholar 

  • Colzani, E., T. Siqueira, M. T. Suriano & F. O. Roque, 2013. Responses of aquatic insect functional diversity to landscape changes in Atlantic forest. Biotropica 45(3): 343–350.

    Article  Google Scholar 

  • Cooper, S. D., P. S. Lake, S. Sabater, J. M. Melack & J. L. Sabo, 2013. The effects of land use changes on streams and rivers in mediterranean climates. Hydrobiologia 719(1): 383–425.

    Article  CAS  Google Scholar 

  • Cornwell, W. K., D. W. Schwilk & D. D. Ackerly, 2006. A trait-based test for habitat filtering: convex hull volume. Ecology 87(6): 1465–1471.

    Article  PubMed  Google Scholar 

  • Covich, A. P., M. A. Palmer & T. A. Crowl, 1999. The role of benthic invertebrate species in freshwater ecosystems: zoobenthic species influence energy flows and nutrient cycling. BioScience 49(2): 119–127.

    Article  Google Scholar 

  • Cruz, B. B., F. A. Teshima & M. Cetra, 2013. Trophic organization and fish assemblage structure as disturbance indicators in headwater streams of lower Sorocaba River basin, São Paulo, Brazil. Neotropical Ichthyology 11(1): 171–178.

    Article  Google Scholar 

  • Culp, J. M., D. G. Armanini, M. J. Dunbar, J. M. Orlofske, N. L. Poff, A. I. Pollard & G. C. Hose, 2011. Incorporating traits in aquatic biomonitoring to enhance causal diagnosis and prediction. Integrated Environmental Assessment and Management 7(2): 187–197.

    Article  PubMed  Google Scholar 

  • Davies, P. J., I. A. Wright, S. J. Findlay, O. J. Jonasson & S. Burgin, 2010. Impact of urban development on aquatic macroinvertebrates in south eastern Australia: degradation of in-stream habitats and comparison with non-urban streams. Aquatic Ecology 44(4): 685–700.

    Article  Google Scholar 

  • Day, J. A., A. D. Harrison, I. J. De Moor, 2002. Guides to the freshwater invertebrates of southern Africa. Diptera. WRC Report No. TT 201/02. Water Research Commission, Pretoria, South Africa, 9.

  • De Castro, D. M. P., S. Dolédec & M. Callisto, 2018. Land cover disturbance homogenizes aquatic insect functional structure in neotropical savanna streams. Ecological Indicators 84: 573–582.

    Article  Google Scholar 

  • De Moor, I. J., J. A. Day, F. C. De Moor, 2003. Guides to the freshwater invertebrates of southern Africa. Insecta I: Ephemeroptera, Odonata and Plecoptera. WRC Report No. TT 207/03. Water Research Commission, Pretoria, South Africa, 7.

  • Ding, N., W. Yang, Y. Zhou, I. Gonzalez-Bergonzoni, J. Zhang, K. Chen & B. Wang, 2017. Different responses of functional traits and diversity of stream macroinvertebrates to environmental and spatial factors in the Xishuangbanna watershed of the upper Mekong River Basin, China. Science of the Total Environment 574: 288–299.

    Article  CAS  PubMed  Google Scholar 

  • Dolédec, S. & B. Statzner, 2008. Invertebrate traits for the biomonitoring of large European rivers: an assessment of specific types of human impact. Freshwater Biology 53(3): 617–634.

    Article  Google Scholar 

  • Dolédec, S., B. Statzner & M. Bournard, 1999. Species traits for future biomonitoring across ecoregions: patterns along a human-impacted river. Freshwater Biology 42(4): 737–758.

    Article  Google Scholar 

  • Dolédec, S., N. Phillips, M. Scarsbrook, R. H. Riley & C. R. Townsend, 2006. Comparison of structural and functional approaches to determining landuse effects on grassland stream invertebrate communities. Journal of the North American Benthological Society 25(1): 44–60.

    Article  Google Scholar 

  • Dolédec, S., N. Phillips & C. Townsend, 2011. Invertebrate community responses to land use at a broad spatial scale: trait and taxonomic measures compared in New Zealand rivers. Freshwater Biology 56(8): 1670–1688.

    Article  Google Scholar 

  • Erős, T., J. Heino, D. Schmera & M. Rask, 2009. Characterising functional trait diversity and trait–environment relationships in fish assemblages of boreal lakes. Freshwater Biology 54(8): 1788–1803.

    Article  Google Scholar 

  • Feio, M. J. & S. Dolédec, 2012. Integration of invertebrate traits into predictive models for indirect assessment of stream functional integrity: a case study in Portugal. Ecological Indicators 15(1): 236–247.

    Article  CAS  Google Scholar 

  • Fernandes, A. C. P., L. S. Fernandes, J. P. Moura, R. M. V. Cortes & F. A. L. Pacheco, 2019. A structural equation model to predict macroinvertebrate-based ecological status in catchments influenced by anthropogenic pressures. Science of the Total Environment 681: 242–257.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, C. de P. & L. Casatti, 2006. Integridade biótica de um córrego na bacia do Alto Rio Paraná avaliada por meio da comunidade de peixes. Biota Neotropica

  • Flynn, D. F., M. Gogol-Prokurat, M. T. Nogeire, N. Molinari, B. T. Richers, B. B. Lin & F. DeClerck, 2009. Loss of functional diversity under land use intensification across multiple taxa. Ecology Letters 12(1): 22–33.

    Article  PubMed  Google Scholar 

  • Fogaça, F. N. O., L. C. Gomes & J. Higuti, 2013. Percentage of impervious surface soil as indicator of urbanization impacts in Neotropical aquatic insects. Neotropical Entomology 42(5): 483–491.

    Article  PubMed  Google Scholar 

  • Gagic, V., I. Bartomeus, T. Jonsson, A. Taylor, C. Winqvist, C. Fischer & R. Bommarco, 2015. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proceedings of the Royal Society B: Biological Sciences 282(1801): 20142620.

    Article  PubMed Central  Google Scholar 

  • Garay, I., 2001. Avaliação do status da biodiversidade ao nível do ecossistema. Conservação Da Biodiversidade Em Ecossistemas Tropicais: Avanços Conceituais e Novas Metodologias De Avaliação e Monitoramento 60: 399–411.

    Google Scholar 

  • Gatz, A. J., Jr., 1979. Community organization in fishes as indicated by morphological features. Ecology 60(4): 711–718.

    Article  Google Scholar 

  • Greenop, A., B. A. Woodcock, C. L. Outhwaite, C. L. Carvell, R. F. Pywell, F. Mancini & N. J. Isaac, 2021. Patterns of invertebrate functional diversity highlight the vulnerability of ecosystem services over a 45-year period. Current Biology 31(20): 4627–4634.

    Article  CAS  PubMed  Google Scholar 

  • Harwell, M. A., V. Myers, T. Young, A. Bartuska, N. Gassman, J. H. Gentile & S. Tosini, 1999. A framework for an ecosystem integrity report card: examples from south Florida show how an ecosystem report card links societal values and scientific information. BioScience 49(7): 543–556.

    Article  Google Scholar 

  • Hauer, F. R. & V. H. Resh, 1996. Benthic macroinvertebrates. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology Academic Press, San Diego: 339–369.

    Google Scholar 

  • Heatherly, T., M. R. Whiles, T. V. Royer & M. B. David, 2007. Relationships between water quality, habitat quality, and macroinvertebrate assemblages in Illinois streams. Journal of Environmental Quality 36(6): 1653–1660.

    Article  CAS  PubMed  Google Scholar 

  • Heino, J., 2011. A macroecological perspective of diversity patterns in the freshwater realm. Freshwater Biology 56(9): 1703–1722.

    Article  Google Scholar 

  • Herman, M. R. & A. P. Nejadhashemi, 2015. A review of macroinvertebrate-and fish-based stream health indices. Ecohydrology & Hydrobiology 15(2): 53–67.

    Article  Google Scholar 

  • Hoagstrom, C. W. & C. R. Berry, 2008. Morphological diversity among fishes in a Great Plains River drainage. Hydrobiologia 596(1): 367–386.

    Article  Google Scholar 

  • INMET-Instituto Nacional De Meteorologia, 2017. Banco de dados meteorológicos para ensino e pesquisa. BDMEP.

  • Johnson, S. L. & N. H. Ringler, 2014. The response of fish and macroinvertebrate assemblages to multiple stressors: A comparative analysis of aquatic communities in a perturbed watershed (Onondaga Lake, NY). Ecological Indicators 41: 198–208.

    Article  Google Scholar 

  • Jones, E. L. & S. R. Leather, 2013. Invertebrates in urban areas: a review. EJE 109(4): 463–478.

    Google Scholar 

  • Jun, Y. C., N. Y. Kim, S. J. Kwon, S. C. Han, I. C. Hwang, J. H. Park & S. J. Hwang, 2011. Effects of land use on benthic macroinvertebrate communities: Comparison of two mountain streams in Korea, EDP Sciences. Annales De Limnologie-International Journal of Limnology 47(1): 35–49.

    Article  Google Scholar 

  • Kindt, R. & R. Coe, 2005. Tree Diversity Analysis: A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies. World Agroforestry Centre.

  • Kohlmann, B., D. Vásquez, A. Arroyo & M. Springer, 2021. Taxonomic and functional diversity of aquatic macroinvertebrate assemblages and water quality in rivers of the dry tropics of Costa Rica. Frontiers in Environmental Science 9: 660260.

    Article  Google Scholar 

  • Kuzmanovic, M., S. Dolédec, N. de Castro-Catala, A. Ginebreda, S. Sabater, I. Muñoz & D. Barceló, 2017. Environmental stressors as a driver of the trait composition of benthic macroinvertebrate assemblages in polluted Iberian rivers. Environmental Research 156: 485–493.

    Article  CAS  PubMed  Google Scholar 

  • Laliberte, E., J. A. Wells, F. DeClerck, D. J. Metcalfe, C. P. Catterall, C. Queiroz & M. M. Mayfield, 2010. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecology Letters 13(1): 76–86.

    Article  PubMed  Google Scholar 

  • Laliberté, E. & P. Legendre, 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1): 299–305.

    Article  PubMed  Google Scholar 

  • Legendre, P., 1998. Model II regression user’s guide, R edition, R Vignette, 14.

  • Leitão, R. P., J. Zuanon, S. Villéger, S. E. Williams, C. Baraloto, C. Fortunel & D. Mouillot, 2016. Rare species contribute disproportionately to the functional structure of species assemblages. Proceedings of the Royal Society B: Biological Sciences 283(1828): 20160084.

    Article  PubMed Central  Google Scholar 

  • Li, K., Z. Zhang, H. Yang, H. Bian, H. Jiang, L. Sheng & C. He, 2018. Effects of instream restoration measures on the physical habitats and benthic macroinvertebrates in an agricultural headwater stream. Ecological Engineering 122: 252–262.

    Article  Google Scholar 

  • Lima, M., V. C. Firmino, C. K. S. de Paiva, L. Juen & L. S. Brasil, 2022. Land use changes disrupt streams and affect the functional feeding groups of aquatic insects in the Amazon. Journal of Insect Conservation 26(2): 137.

    Article  Google Scholar 

  • Magura, T., G. L. Lövei & B. Tóthmérész, 2008. Time-consistent rearrangement of carabid beetle assemblages by an urbanisation gradient in Hungary. Acta Oecologica 34(2): 233–243.

    Article  Google Scholar 

  • Mahmoud, S. H. & T. Y. Gan, 2018. Impact of anthropogenic climate change and human activities on environment and ecosystem services in arid regions. Science of the Total Environment 633: 1329–1344.

    Article  CAS  PubMed  Google Scholar 

  • Mccabe, D. J. & N. J. Gotelli, 2000. Effects of disturbance frequency, intensity, and area on assemblages of stream macroinvertebrates. Oecologia 124(2): 270–279.

    Article  CAS  PubMed  Google Scholar 

  • McGill, B. J., B. J. Enquist, E. Weiher & M. Westoby, 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21(4): 178–185.

    Article  Google Scholar 

  • Menbohan, F., S. Tchakonte, A. G. Ajeagah, C. F. Bilong & T. Njiné, 2013. Water quality assessment using benthic macroinvertebrates in a periurban stream (Cameroon). The International Journal of Biotechnology 2(5): 91–104.

    Google Scholar 

  • Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America. 3rd ed. Kendall/Hunt, Dubuque, I.A., 862. ISBN: 978-0787232412.

  • Merritt, R. W., K. W. Cummins & M. B. Berg, 1996. An Introduction to the aquatic insects of North America-Kendall Hunt, Dubuque, USA:

    Google Scholar 

  • Merritt, R. W., K. W. Cummins, & M. B. Berg, 2008. An Introduction to the Aquatic Insects of North America. 4th. Kendall-Hunt, Dubuque.

  • Miserendino, M. L. & C. I. Masi, 2010. The effects of land use on environmental features and functional organization of macroinvertebrate communities in Patagonian low order streams. Ecological Indicators 10(2): 311–319.

    Article  CAS  Google Scholar 

  • Mokany, K., J. Ash & S. Roxburgh, 2008. Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. Journal of Ecology 96(5): 884–893.

    Article  Google Scholar 

  • Montaña, C. G. & K. O. Winemiller, 2010. Local-scale habitat influences morphological diversity of species assemblages of cichlid fishes in a tropical floodplain river. Ecology of Freshwater Fish 19(2): 216–227.

    Article  Google Scholar 

  • Musonge, P. S., P. Boets, K. Lock, M. N. D. Ambarita, M. A. E. Forio & P. L. Goethals, 2020. Rwenzori Score (RS): a benthic macroinvertebrate index for biomonitoring rivers and streams in the Rwenzori region, Ugenda. Sustainability 12: 10473.

    Article  Google Scholar 

  • Mykrä, H., J. Heino & T. Muotka, 2007. Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Global Ecology and Biogeography 16(2): 149–159.

    Article  Google Scholar 

  • Nery, T. & D. Schmera, 2016. The effects of top-down and bottom-up controls on macroinvertebrate assemblages in headwater streams. Hydrobiologia 763(1): 173–181.

    Article  CAS  Google Scholar 

  • Niemi, G. J. & M. E. Mcdonald, 2004. Application of ecological indicators. Annual Review of Ecology, Evolution and Systematics 35: 89–111.

    Article  Google Scholar 

  • Oksanen, J., R. Kindt, P. Legendre, B. O’Hara, M. H. H. Stevens, M. J. Oksanen & M. A. S. S. Suggests, 2007. The vegan package. Community ecology package 10(631-637): 719

  • Oliveira, A. L. H. & J. L. Nessimian, 2010. Spatial distribution and functional feeding groups of aquatic insect communities in Serra da Bocaina streams, southeastern Brazil. Acta Limnologica Brasiliensia 4: 424–441.

    Article  Google Scholar 

  • Parolin, M., C. Volkmer-Ribeiro & J. A. Leandrini, 2010. Abordagem ambiental interdisciplinar em bacias hidrográficas no Estado do Paraná. Campo Mourão: Felcicam: 170.

  • Pease, A. A., A. A. González-Díaz, R. O. C. I. O. Rodiles-Hernández & K. O. Winemiller, 2012. Functional diversity and trait–environment relationships of stream fish assemblages in a large tropical catchment. Freshwater Biology 57(5): 1060–1075.

    Article  Google Scholar 

  • Pereira. M. C. B. & J. L. Scroccaro, (Org.), 2013. Bacias Hidrográficas do Paraná: Série Histórica, Curitiba-PR.

  • Petchey, O. L. & K. J. Gaston, 2006. Functional diversity: back to basics and looking forward. Ecology Letters 9(6): 741–758.

    Article  PubMed  Google Scholar 

  • Pilière, A., A. M. Schipper, A. M. Breure, L. Posthuma, D. de Zwart, S. D. Dyer & M. A. Huijbregts, 2014. Comparing responses of freshwater fish and invertebrate community integrity along multiple environmental gradients. Ecological Indicators 43: 215–226.

    Article  Google Scholar 

  • Poff, N. L. & J. K. H. Zimmerman, 2010. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology 55(1): 194–205.

    Article  Google Scholar 

  • Poff, N. L., J. D. Olden, N. K. Vieira, D. S. Finn, M. P. Simmons & B. C. Kondratieff, 2006. Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society 25(4): 730–755.

    Article  Google Scholar 

  • R Core Team, 2019. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

  • Ramírez, A. & P. E. Gutiérrez-Fonseca, 2014. Functional feeding groups of aquatic insect families in Latin America: a critical analysis and review of existing literature. Revista De Biologia Tropical/ International Journal of Tropical Biology and Conservation 62: 155–167.

    Article  Google Scholar 

  • Resh, V. H. & D. M. Rosenberg, 1993. Freshwater Biomonitoring and Benthic Macroinvertebrates, Chapman & Hall, New York:

    Google Scholar 

  • Rosa, B. J. F. V., L. F. T. Rodrigues, G. S. de Oliveira & A. R. da Gama, 2014. Chironomidae and Oligochaeta for water quality evaluation in an urban river in southeastern Brazil. Environmental Monitoring and Assessment 186(11): 7771–7779.

    Article  CAS  PubMed  Google Scholar 

  • Ruaro, R. & E. A. Gubiani, 2013. A scientometric assessment of 30 years of the Index of Biotic Integrity in aquatic ecosystems: applications and main flaws. Ecological Indicators 29: 105–110.

    Article  Google Scholar 

  • Ruaro, R., E. A. Gubiani, A. M. Cunico, J. Higuti, Y. Moretto & P. A. Piana, 2019. Unified multimetric index for the evaluation of the biological condition of streams in Southern Brazil based on fish and macroinvertebrate assemblages. Environmental Management 64(5): 661–673.

    Article  PubMed  Google Scholar 

  • Rubach, M. N., R. Ashauer, D. B. Buchwalter, H. J. De Lange, M. Hamer, T. G. Preuss & S. J. Maund, 2011. Framework for traits-based assessment in ecotoxicology. Integrated Environmental Assessment and Management 7(2): 172–186.

    Article  PubMed  Google Scholar 

  • Saulino, H. H. L., J. J. Corbi & S. Trivinho-Strixino, 2014. Aquatic insect community structure under the influence of small dams in a stream of the Mogi-Guaçu river basin, state of São Paulo. Brazilian Journal of Biology 74(1): 79–88.

    Article  CAS  Google Scholar 

  • Schneck, F., A. Schwarzbold & A. S. Melo, 2011. Substrate roughness affects stream benthic algal diversity, assemblage composition, and nestedness. Journal of the North American Benthological Society 30(4): 1049–1056.

    Article  Google Scholar 

  • Song, M. Y., F. Leprieur, A. Thomas, S. Lek-Ang, T. S. Chon & S. Lek, 2009. Impact of agricultural land use on aquatic insect assemblages in the Garonne River catchment (SW France). Aquatic Ecology 43(4): 999–1009.

    Article  CAS  Google Scholar 

  • Statzner, B., 2011. Mineral grains in caddisfly pupal cases and streambed sediments: assessing resource use and its limitation across various river types. Annales de limnologie-international journal of limnology. EDP Sciences: 103–118.

  • Statzner, B., S. Dolédec & B. Hugueny, 2004. Biological trait composition of European stream invertebrate communities: assessing the effects of various trait filter types. Ecography 27(4): 470–488.

    Article  Google Scholar 

  • Strecker, A. L., J. D. Olden, J. B. Whittier & C. P. Paukert, 2011. Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity. Ecological Applications 21(8): 3002–3013.

    Article  Google Scholar 

  • Suguio, K., 1973. Introdução à sedimentologia.

  • Tchakonté, S., G. A. Ajeagah, A. I. Camara, D. Diomandé, N. L. T. Nyamsi & P. Ngassam, 2015. Impact of urbanization on aquatic insect assemblages in the coastal zone of Cameroon: the use of biotraits and indicator taxa to assess environmental pollution. Hydrobiologia 755: 123–144.

    Article  Google Scholar 

  • Theobald, D. M., S. J. Goetz, J. B. Norman & P. Jantz, 2009. Watersheds at risk to increased impervious surface cover in the conterminous United States. Journal of Hydrologic Engineering 14(4): 362–368.

    Article  Google Scholar 

  • Tolonen, K. E., K. Leinonen, H. Marttila, J. Erkinaro & J. Heino, 2017. Environmental predictability of taxonomic and functional community composition in high-latitude streams. Freshwater Biology 62(1): 1–16.

    Article  Google Scholar 

  • Townsend, C. R. & A. G. Hildrew, 1994. Species traits in relation to a habitat templet for river systems. Freshwater Biology 31(3): 265–275.

    Article  Google Scholar 

  • Vallet, J., H. Daniel, V. Beaujouan, F. Rozé & S. Pavoine, 2010. Using biological traits to assess how urbanization filters plant species of small woodlands. Applied Vegetation Science 13(4): 412–424.

    Article  Google Scholar 

  • Verberk, W., C. G. E. Van Noordwijk & A. G. Hildrew, 2013. Delivering on a promise: integrating species traits to transform descriptive community ecology into a predictive science. Freshwater Science 32(2): 531–547.

    Article  Google Scholar 

  • Vieira, N. K., N. L. Poff, D. M. Carlisle, S. R. Moulton, M. L. Koski & B. C. Kondratieff, 2006. A database of lotic invertebrate traits for North America. US Geological Survey Data Series 187: 1–15.

    Google Scholar 

  • Villéger, S., N. W. H. Mason & D. Mouillot, 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89(8): 2290–2301.

    Article  PubMed  Google Scholar 

  • Voß, K. & R. B. Schäfer, 2017. Taxonomic and functional diversity of stream invertebrates along an environmental stress gradient. Ecological Indicators 81: 235–242.

    Article  Google Scholar 

  • Wang, B., D. Liu, S. Liu, Y. Zhang, D. Lu & L. Wang, 2012. Impacts of urbanization on stream habitats and macroinvertebrate communities in the tributaries of Qiangtang River, China. Hydrobiologia 680(1): 39–51.

    Article  CAS  Google Scholar 

  • Wentworth, C. K., 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology 30(5): 377–392.

    Article  Google Scholar 

  • Yadamsuren, O., J. C. Morse, B. Hayford, J. K. Gelhaus & P. H. Adler, 2020. Macroinvertebrate community responses to land use: a trait-based approach for freshwater biomonitoring in Mongolia. Hydrobiologia 847(8): 1887–1902.

    Article  Google Scholar 

  • Zakaria, M. Z. & M. Maryati, 2021. Comparison of diversity and community structure of aquatic insects based on habitat class in Johor. IOP Conference Series: Earth and Environmental Science 736(1): 012074.

    Google Scholar 

  • Zhang, Y., R. Zhao, W. Kong, S. Geng, C. N. Bentsen & X. Qu, 2013. Relationships between macroinvertebrate communities and land use types within different riparian widths in three headwater streams of Taizi River, China. Journal of Freshwater Ecology 28(3): 307–328.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES-PROAP) for the scholarship granted to N. R., Machado and the financial support to the project. In addition, we thank the Federal University of Paraná (UFPR), the team from the Laboratory of Benthic Aquatic Invertebrates – LIAB and the UNIOESTE team, for support provided during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tássia J. Malacarne.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. Furthermore, the authors declare that, upon request, the data used to carry out this article are available.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Luiz Ubiratan Hepp, Frank Onderi Masese & Franco Teixeira de Mello / Stream Ecology and Environmental Gradients

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malacarne, T.J., Machado, N.R. & Moretto, Y. Influence of land use on the structure and functional diversity of aquatic insects in neotropical streams. Hydrobiologia 851, 265–280 (2024). https://doi.org/10.1007/s10750-023-05207-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05207-5

Keywords

Navigation