Skip to main content

Advertisement

Log in

The effects of top-down and bottom-up controls on macroinvertebrate assemblages in headwater streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Headwater stream macroinvertebrates play an important role in processing allochthonous leaf litter, which suggests that bottom-up forces control macroinvertebrates. However, because larvae of stream-breeding salamanders are predators of macroinvertebrates and are abundant consumers in these ecosystems, macroinvertebrates in fishless headwater streams might also be controlled by top-down forces through predation by salamander larvae. The aim of this study was to test if and to what degree taxa richness, abundance, and biomass of macroinvertebrates are affected by bottom-up and top-down forces. We selected headwater streams with high abundances of fire salamander larvae (1.2–2.6 individuals per 1 m of shore length) and manipulated bottom-up and top-down forces on macroinvertebrates by leaf litter addition and by the exclusion of salamander larvae. The amphipod Gammarus fossarum Koch, 1836 was the dominant taxon and responded positively to litter addition. Linear models showed that neither predator exclusion nor leaf litter addition affected richness. However, variation in biomass and density were both explained by the individual and joint effects of bottom-up and top-down forces. These findings suggest that macroinvertebrates in these streams are strongly dependent on the organic matter input and salamander larvae, and headwater streams interact strongly with their adjacent terrestrial areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Clarke, A., R. Mac Nally, N. Bond & P. S. Lake, 2008. Macroinvertebrate diversity in headwater streams: a review. Freshwater Biology 53: 1707–1721.

    Article  Google Scholar 

  • Clipp, H. L. & J. T. Anderson, 2014. Environmental and anthropogenic factors influencing salamanders in riparian forests: a review. Forests 5: 2679–2702.

    Article  Google Scholar 

  • Crawley, M. J., 2007. The R Book. Wiley, Chichester.

    Book  Google Scholar 

  • Cummins, K. W., 1973. Trophic relations of aquatic insects. Annual Review of Entomology 18: 183–206.

    Article  Google Scholar 

  • Cummins, K. W., 2002. Riparian-stream linkage paradigm. Internationale Vereinigung fur Theoretische und Angewandte Limnologie Verhandlungen 28(1): 49–58.

    Google Scholar 

  • Dahl, J., 1998. Effects of a benthivorous and a drift-feeding fish on a benthic stream assemblage. Oecologia 116: 426–432.

    Article  Google Scholar 

  • Davic, R. D. & H. H. Welsh, 2004. On the ecological role of salamanders. Annual Review of Ecology, Evolution and Systematics 35: 405–434.

    Article  Google Scholar 

  • Dobson, M. & A. G. Hildrew, 1992. A test of resource limitation among shredding detritivores in low order streams in southern England. Journal of Animal Ecology 61: 69–77.

    Article  Google Scholar 

  • Dobson, M., A. G. Hildrew, A. Ibbotson & J. Garthwaite, 1992. Enhancing litter retention in streams: do altered hydraulics and habitat area confound field experiments? Freshwater Biology 28: 71–79.

    Article  Google Scholar 

  • Duferne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.

    Google Scholar 

  • Flory, E. & A. M. Milner, 1999. Influence of riparian vegetation on invertebrate assemblages in a recent formed stream in Glacier Bay National park, Alaska. Journal of the North American Benthological Society 18: 261–273.

    Article  Google Scholar 

  • Gessner, M. O. & E. Chauvet, 2002. A case for using litter breakdown to assess functional stream integrity. Ecological Applications 12: 498–510.

    Article  Google Scholar 

  • Gessner, M. O., E. Chauvet & M. Dobson, 1999. A perspective on leaf litter breakdown in streams. Oikos 85: 377–384.

    Article  Google Scholar 

  • Heino, J., T. Muotka & R. Pavola, 2003. Determinants of macroinvertebrate diversity in headwater streams: regional and local influences. Journal of Animal Ecology 72: 425–434.

    Article  Google Scholar 

  • Heino, J., J. Parviarien, P. Paavola, M. Jehle, P. Louchi & T. Muotka, 2005. Characterizing macroinvertebrate assemblage structure in relation to stream site and tributary position. Hydrobiologia 539: 121–130.

    Article  Google Scholar 

  • Huang, C. & A. Sih, 1991. An experimental-study on the effects of salamander larvae on isopods in stream pools. Freshwater Biology 25: 451–459.

    Article  Google Scholar 

  • Jabiol, J., J. Cornut, M. Danger, M. Jouffroy, A. Elger & E. Chauvet, 2014. Litter identity mediates predator impacts on the functioning of an aquatic detritus-based food web. Oecologia 176: 225–235.

    Article  PubMed  Google Scholar 

  • Johnson, B. R. & J. B. Wallace, 2005. Bottom-up limitation of a stream salamander in a detritus-based food web. Canadian Journal of Fisheries and Aquatic Sciences 62: 301–311.

    Article  Google Scholar 

  • Keitzer, S. C. & R. R. Goforth, 2013. Salamander diversity alters stream macroinvertebrate community structure. Freshwater Biology 58: 2114–2125.

    Article  Google Scholar 

  • Koetsier, P., 2002. Short-term benthic colonization dynamics in an agricultural stream recovering from slaughterhouse effluents. Journal of the American Water Resources Association 38: 1–14.

    Article  Google Scholar 

  • Lechthaler, W., 2009. Macrozoobenthos key to families of macroinvertebrates in European freshwaters. Eutaxa taxonomic software for biological scientists. DVD Edition, Vienna.

  • Liboriussen, L., E. Jeppesen, M. E. Bramm & M. F. Lassen, 2005. Periphyton-macroinvertebrate interactions in light and fish manipulated enclosures in a clear and a turbid shallow lake. Aquatic Ecology 39: 23–39.

    Article  CAS  Google Scholar 

  • Meijering, M. P. D., 1972. Physiologische Beitrage zur Frage der systematischen Stellung von Gammarus pulex (L.) and Gammarus fossarum Koch (Amphipoda). Crustaceana 3: 313–325.

    Google Scholar 

  • Meissner, K. & T. Muotka, 2006. The role of trout in stream food webs: integrating evidence from field surveys and experiments. Journal of Animal Ecology 75: 421–433.

    Article  PubMed  Google Scholar 

  • MeteoSwiss, 2013. Climate normals. Visp, reference period 1981–2010. Available at: http://www.meteoswiss.ch. Assessed Oct 2013).

  • Mouilot, D., J. M. Culioli, D. Pelletier & J. A. Tomasini, 2008. Do we protect biological originality in protected areas? A new index and an application to the Bonifacio Strait Natural Reserve. Biological Conservation 141: 1569–1580.

    Article  Google Scholar 

  • Murphy, J. F., P. S. Giller & M. A. Horan, 1998. Spatial scale and the aggregation of stream macroinvertebrates associated with leaf packs. Freshwater Biology 39: 325–337.

    Article  Google Scholar 

  • Olson, D. H., J. B. Leirness, P. G. Cunningham & E. A. Steel, 2014. Riparian buffers and forest thinning: effects on headwater vertebrates 10 years after thinning. Forest Ecology and Management 321: 81–94.

    Article  Google Scholar 

  • Power, M. E., 1992. Top-down and bottom-up forces in food webs: do plants have primacy. Ecology 73: 733–746.

    Article  Google Scholar 

  • R Core team, 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computin, Vienna. http://www-R-project.org/.

  • Reinhardt, T., S. Steinfartz, A. Paetzold & M. Weitere, 2013. Linking the evolution of habitat choice to ecosystem functioning: direct and indirect effects of pond-reproducing fire salamanders on aquatic-terrestrial subsidies. Oecologia 173: 281–291.

    Article  PubMed  Google Scholar 

  • Richardson, J. S., 1992. Food, microhabitat, or both? Macroinvertebrate use of leaf accumulations in a montane stream. Freshwater Biology 27: 169–176.

    Article  Google Scholar 

  • Richardson, J. S. & R. J. Danehy, 2007. A synthesis of the ecology of headwater streams and their riparian zones in temperate forests. Forest Science 53: 131–147.

    Google Scholar 

  • Ruff, H. & G. Maier, 2000. Calcium carbonate deposits reduce predation pressure on Gammarus fossarum from salamander larvae. Freshwater Biology 43: 99–105.

    Article  Google Scholar 

  • Schmera, D., 2004. Spatial distribution and coexistence patterns of caddisfly larvae (Trichoptera) in a Hungarian stream. International Review of Hydrobiology 89: 51–57.

    Article  Google Scholar 

  • Schmera, D. & T. Erős, 2004. Effect of riverbed morphology, stream order and season on the structural and functional attributes of caddisfly assemblages (Insecta: Trichoptera). Annales de Limnologie – International Journal of Linology 40: 193–200.

    Article  Google Scholar 

  • Schmera, D., B. Baur & T. Erős, 2012. Does functional redundancy of communities provide insurance against human disturbance? An analysis using regional-scale stream invertebrate data. Hydrobiologia 693: 183–194.

    Article  Google Scholar 

  • Sircom, J. & S. J. Walde, 2009. Disturbance, fish, and variation in the predatory insect guild of costal streams. Hydrobiologia 620: 181–190.

    Article  Google Scholar 

  • Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera, 2010. Invertébrés d’eau douce: systématique, biologie, écologie. CNRS Editions, Paris: 588.

    Google Scholar 

  • Thiesmeier, B., 1982. Beitrag zur Nahrungsbiologie der Larven des Feuersalamanders, Salamandra salamandra (L.) (Amphibia: Caudata: Salamandridae). Salamandra 18: 86–88.

    Google Scholar 

  • Thiesmeier, B., 2004. Der Feuersalmamander. Laurenti Verlag, Bielefeld: 192.

    Google Scholar 

  • Townsend, C. R. & A. G. Hildrew, 1976. Field experiments on the drifting, colonization and continuous redistribution of stream benthos. Journal of Animal Ecology 45: 759–772.

    Article  Google Scholar 

  • Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1997. Multiple tropic levels of a forest stream linked to terrestrial litter inputs. Science 277: 102–104.

    Article  CAS  Google Scholar 

  • Weigelhofer, G. & J. Waringer, 2003. Vertical distribution of benthic macroinvertebrates in riffles versus deep runs with differing contents of fine sediments (Weidlingbach, Austria). International Review of Hydrobiology 88: 304–313.

    Article  Google Scholar 

  • Williams, L. R., C. M. Taylor & M. L. Warren Jr, 2003. Influence of fish predation on assemblage structure of macroinvertebrates in an intermittent stream. Transactions of the American Fisheries Society 132: 120–130.

    Article  Google Scholar 

  • Wirth, A., D. Schmera & B. Baur, 2010. Native and alien macroinvertebrate richness in a remnant of the former river Rhine: a source for recolonisation of restored habitats? Hydrobiologia 652: 89–100.

    Article  Google Scholar 

  • Wolfgang, E., 1989. Was lebt in Tümpel, Bach und Weiher? Kosmos Naturführer. Franckh-Kosmos, Stuttgart: 313.

    Google Scholar 

  • Zeug, Z. S., L. K. Albertson, J. Hardy & B. Cardinale, 2011. Predictors of Chinook salmon extirpation in California’s Central Valley. Fisheries Management and Ecology 18: 61–71.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Benedikt Schmidt (University of Zurich) for providing information about the distribution salamander larvae, Peter Tanner (Abteilung Natur und Landschaft, Kanton Baselland, Schweiz) for permitting the collection of macroinvertebrates in the studied streams, and Prof. Dr. Lee Kats and four anonymous reviewers for their comments on the manuscript. We thank Dr. Krystyna Haq and Dr. Jo Edmondston for checking the English in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thayse Nery.

Additional information

Handling editor: Lee B. Kats

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nery, T., Schmera, D. The effects of top-down and bottom-up controls on macroinvertebrate assemblages in headwater streams. Hydrobiologia 763, 173–181 (2016). https://doi.org/10.1007/s10750-015-2371-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2371-5

Keywords

Navigation