Skip to main content
Log in

Decreases in mangrove productivity and marsh die-off due to temporary increase in salinity, a case in Mexico

  • EFFECTS OF CHANGES IN SALINITY
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Mangroves are coastal ecosystems dependent on saline water conditions, although freshwater is seasonally present in most types of mangroves. The riparian mangroves have a greater influence of freshwater than salty water, reducing saline stress and allowing greater productivity and diversity. As they are associated with freshwater channels, their hydrology makes them both a source and a sink for sediments, nutrients, and organic matter. The wetlands adjacent to riparian mangroves are mainly freshwater swamps or marshes. To monitor the composition and abundance of the vegetation and the production of litter and roots in the midterm, 27 monitoring units were monitored (22 in mangroves, five in wetlands) in two periods (2015–2016 and 2018–2019). In them, we evaluated biotic characteristics and root production annually, and monthly the litter production and pore and river water salinity. We detected a gradient of salinity spatially and temporally. The salinity gradually decreased as the distance to the river increased. In the winter of 2018–2019 saline intrusion increased the interstitial and river water values by an average of 10 (interstitial water) and 16‰, (river water). This increase caused a significant decrease in litter and root production and augmented the cover of Laguncularia racemosa (freshwater marsh), mortality of herbaceous species (Acrostichum danaeifolium, Typha domingensis, Phragmites australis), and tree species such as Annona glabra and Acoelorraphe wrightii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the first author on reasonable request.

References

  • Agraz Hernández, C. M., C. A. Chan Keb, S. Iriarte-Vivar, G. Posada Venegas, B. Vega Serratos & J. Osti Sáenz, 2015. Phenological variation of Rhizophora mangle and ground water chemistry associated to changes of the precipitation [Variación fenológica de Rhizophora mangle y química del agua intersticial asociada a cambios de la precipitación]. Hidrobiológica 25(1): 49–61.

    Google Scholar 

  • Akhand, A., K. Watanabe, A. Chanda, T. Tokoro, K. Chakraborty, H. Moki, T. Tanaya, J. Ghosh & T. Kuwae, 2021. Lateral carbon fluxes and CO2 evasion from a subtropical mangrove-seagrass-coral continuum. Science of the Total Environment 752: 142190. https://doi.org/10.1016/j.scitotenv.2020.142190.

    Article  CAS  PubMed  Google Scholar 

  • Barendregt, A. & C. W. Swarth, 2013. Tidal freshwater wetlands: variation and changes. Estuaries and Coasts 3: 445–456.

    Article  Google Scholar 

  • Benítez Torres, J. A., & G. J. Villalobos-Zapata, 2010. Sitios prioritarios para la conservación. In Villalobos-Zapata, G. J. & J. Mendoza Vega (coords), La Biodiversidad en Campeche: Estudio de Estado. CONABIO/ Gobierno del Estado de Campeche/Universidad Autónoma de Campeche/ECOSUR. México, D.F.: 586–606.

  • Bortolotti, L. E., V. L. S. Louis, R. D. Vinebrooke & A. P. Wolfe, 2016. Net ecosystem production and carbon greenhouse gas fluxes in three prairie wetlands. Ecosystems 19(3): 411–425.

    Article  CAS  Google Scholar 

  • Brower, J. E., J. H. Zar & C. N. von Ende, 1997. Field and laboratory methods for general ecology WCB-McGraw-Hill, Boston.

    Google Scholar 

  • Casanova, M.T. & M. A. Brock, 2000. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology 147(2): 237–250.

    Article  Google Scholar 

  • Cejudo, E., M. E. Hernández, A. Campos, D. Infante-Mata & P. Moreno-Casasola, 2022. Leaf litter production and soil carbon storage in forested freshwater wetlands and mangrove swamps in Veracruz, Gulf of Mexico. Mires and Peat 28: 15. https://doi.org/10.19189/MaP.2020.OMB.StA.1994.

    Article  Google Scholar 

  • Cintrón, G. A., E. Lugo & R. Martínez, 1985. Structural and functional properties of mangrove forests. In D’Arcy, W. G. & M. D. Corma (eds), The Botany and Natural History of Panama, IV series: Monographs in Systematic Botany, Vol. 10. Missouri Botanical Garden, San Luis, MO: 53–66.

    Google Scholar 

  • Clark, K. E., V. D. Bravo, S. N. Giddings, K. A. Davis, G. Pawlak, M. A. Torres, A. E. Adelson, C. I. César-Ávila, X. Boza & R. Collin, 2022. Land use and land cover shape river water quality at a continental Caribbean land-ocean interface. Frontiers in Water 4: 737920. https://doi.org/10.3389/frwa.2022.737920.

    Article  Google Scholar 

  • Clarke, K. R., P. J. Somerfield & R. N. Gorley, 2008. Testing of null hypotheses in exploratory community analyses similarity profiles and biota-environment linkage. Journal of Experimental Marine Biology 366: 56–69.

    Article  Google Scholar 

  • Claudino, M. C., A. L. M. Pessanha, F. G. Araújo & A. M. Garcia, 2015. Trophic connectivity and basal food sources sustaining tropical aquatic consumers along a mangrove to ocean gradient. Estuarine, Coastal and Shelf Science 167: 45–55. https://doi.org/10.1016/j.ecss.2015.07.005.

    Article  Google Scholar 

  • CONABIO, 2013. Instructivo para presentar programas de monitoreo de manglares en México, 2013. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, D. F. http://www.conabio.gob.mx/web/proyectos/pdf/instructivos/Instructivo_Manglares_2013.pdf

  • Conner, W. H. & J. W. Day Jr., 1992. Water level variability and litterfall productivity of forested freshwater wetlands in Louisiana. American Midland Naturalist 1: 237–245.

    Article  Google Scholar 

  • Conner, W., S. Whitmire, J. Duberstein, R. Stalter & J. Baden, 2022. Changes within a South Carolina coastal wetland forest in the face of rising sea level. Forests 13(3): 414. https://doi.org/10.3390/f13030414.

    Article  Google Scholar 

  • Coronado-Molina, C., H. Álvarez-Guillen, J. W. Day Jr., E. Reyes, B. C. Pérez, F. Vera-Herrera & R. Twilley, 2012. Litterfall dynamics in carbonate and deltaic mangrove ecosystems in the Gulf of Mexico. Wetlands Ecology and Management 20(2): 123–136.

    Article  CAS  Google Scholar 

  • Dasgupta, S., I. Sobhan & D. Wheeler, 2017. The impact of climate change and aquatic salinization on mangrove species in the Bangladesh Sundarbans. Ambio 46: 680–694. https://doi.org/10.1007/s13280-017-0911-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis, S., D. Childers, J. Lorenz, H. Wanless & T. Hopkins, 2005. A conceptual model of ecological interactions in the mangrove estuaries of the Florida Everglades. Wetlands 25(4): 832–842.

    Article  Google Scholar 

  • Day, J. W., Jr., C. Coronado-Molina, F. Vera-Herrera, R. Twilley, V. H. Rivera-Monroy, H. Alvarez Guillen, R. Day & W. Conner, 1996. A 7 year record of above-ground net primary production in a southeastern Mexican mangrove forest. Aquatic Botany 55(1): 39–60.

    Article  Google Scholar 

  • Domínguez-Domínguez, M., J. Zavala-Cruz & P. Martínez-Zurimendi, 2011. Manejo Forestal Sustentable de los Manglares de Tabasco. Secretaría de Recursos Naturales y Protección Ambiental/Colegio de Postgraduados, Villahermosa.

  • Earp, S. H., N. Prinz, M. Cziesielski & M. Andskog, 2018. In Jungblut, S., V. Liebich & M. Bode (eds), YOUMARES 8—Oceans Across Boundaries: Learning from Each Other Springer Open, Cham, Switzerland: 125–144.

    Chapter  Google Scholar 

  • Ewel, K. C., 2010. Appreciating tropical coastal wetlands from a landscape perspective. Frontiers in Ecology and Environment 8: 20–26.

    Article  Google Scholar 

  • Faith, D. P., P. R. Minchin & L. Belbin, 1987. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69: 57–68.

    Article  Google Scholar 

  • Félix Pico, E. F., O. E. Olguín Quiñones, A. Hernández-Herrera & F. Flores-Verdugo, 2006. Producción primaria de los mangles del estero El Conchalito en Bahía de La Paz (Baja California Sur, México). Ciencias Marinas 32: 53–63.

    Article  Google Scholar 

  • Flores-Verdugo, F., P. Moreno-Casasola, C. M. Agraz-Hernández, H. López Rosas, D. Benítez Pardo & A. C. Travieso- Bello, 2007. La topografía y el hidroperíodo: dos factores que condicionan la restauración de los humedales costeros. Boletín de la Sociedad Botánica de México 80 (suplemento): 33–47.

  • Flores-Verdugo, F., F. Amezcua, J. Kovacs, D. Serrano & M. Blanco-Correa, 2014. Changes in the hydrological regime of coastal lagoons affect mangroves and small-scale fisheries: the case of the mangrove-estuarine complex of Marismas Nacionales (Pacific Coast of Mexico). In Amezcua, F. & B. Bellgraph (eds), Fisheries Management of Mexican and Central American Estuaries Estuaries of the World Springer, Dordrecht: 81–91.

    Chapter  Google Scholar 

  • Forman, R. T. T., 1995. Some general principles of landscape and regional ecology. Landscape Ecology 10: 133–142.

    Article  Google Scholar 

  • Forman, R. T. T., 1996. Land Mosaics. The Ecology of Landscapes and Regions, Cambridge University Press, Cambridge:

    Google Scholar 

  • Grieger, R., S. Capon & W. Hadwen, 2019. Resilience of coastal freshwater wetland vegetation of subtropical Australia to rising sea levels and altered hydrology. Regional Environmental Change 19: 279–292.

    Article  Google Scholar 

  • Guerra-Martínez, V. & S. Ochoa-Gaona, 2018. Evaluación del programa de manejo de la Reserva de la Biosfera Pantanos de Centla en Tabasco México. Universidad y Ciencia 24(2): 135–146.

    Google Scholar 

  • Herbert, E. R., P. Boon, A. J. Burgin, S. C. Neubauer, R. B. Franklin, M. Ardón, K. N. Hopfensperger, L. P. M. Lamers & P. Gell, 2015. A global perspective on wetlands salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6: 1–43.

    Article  Google Scholar 

  • Hernández-Arana, H. A., A. Vega-Zepeda, M. A. Ruíz-Zárate, L. I. Falcón-Álvarez, H. López-Adame, J. Herrera-Silveira & J. Kaster, 2015. Transverse coastal corridor: from freshwater lakes to coral reefs ecosystems. In Islebe, G., S. Calmé, J. León-Cortés & B. Schmook (eds), Biodiversity and Conservation of the Yucatán Peninsula Springer, Cham: 355–376. https://doi.org/10.1007/978-3-319-06529-8_14.

    Chapter  Google Scholar 

  • Infante Mata, D., P. Moreno-Casasola, C. Madero-Vega, G. Castillo-Campos & B. G. Warner, 2011. Floristic composition and soil characteristics of tropical freshwater forested wetlands of Veracruz on the coastal plain of the Gulf of Mexico. Forest Ecology and Management 262(8): 1514–1531.

    Article  Google Scholar 

  • Infante-Mata, D., P. Moreno-Casasola & C. Madero-Vega, 2014. ¿Pachira aquatica, un indicador del límite del manglar? Revista Mexicana de Biodiversidad 85(1): 143–160.

    Article  Google Scholar 

  • Janousek, C. N. & C. Mayo, 2013. Plant responses to increased inundation and salt exposure: interactive effects on tidal marsh productivity. Plant Ecology 214(7): 928–971.

    Article  Google Scholar 

  • Janousek, C. N., B. D. Dugger, B. M. Drucker & K. M. Thorne, 2020. Salinity and inundation effects on productivity of brackish tidal marsh plants in the San Francisco Bay-Delta Estuary. Hydrobiologia 847(20): 4311–4323.

    Article  Google Scholar 

  • Jaxion-Harm, J., J. Saunders & M. R. Speight, 2012. Distribution of fish in seagrass, mangroves and coral reefs: life-stage dependent habitat use in Honduras. Revista de Biología Tropical 60(2): 683–698.

    Article  PubMed  Google Scholar 

  • Jespersen, J. L. & J. L. Osher, 2007. Carbon storage in the soils of mesotidal Gulf of Maine Estuary. Soil Science Society of America Journal 71: 372–379.

    Article  CAS  Google Scholar 

  • Junk, W. J., S. An, C. M. Finlayson, B. Gopal, J. Květ, S. A. Mitchell, W. J. Mitsch & R. D. Robarts, 2013. Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquatic Sciences 75: 151–167.

    Article  CAS  Google Scholar 

  • Kelleway, J. J., K. Cavanaugh, K. Rogers, I. C. Feller, E. Ens, C. Doughty & N. Saintilan, 2017. Review of the ecosystem service implications of mangrove encroachment into salt marshes. Global Change Biology 23(10): 3967–3983. https://doi.org/10.1111/gcb.13727.

    Article  PubMed  Google Scholar 

  • Kent, M., 2011. Vegetation Description and Data Analysis: A Practical Approach, 2nd ed. Wiley-Blackwell, London.

    Google Scholar 

  • Landgrave, R. & P. Moreno-Casasola, 2012. Evaluación cuantitativa de la pérdida de humedales en México. Investigación Ambiental 4: 19–35.

    Google Scholar 

  • López Rosas, H. & P. Moreno-Casasola, 2022. From marsh to swamps: vegetation gradient linked to estuarine hydrology. Wetland Science & Practice 40(1): 26–34.

    Google Scholar 

  • López Rosas, H., F. López-Barrera, P. Moreno-Casasola, G. Aguirre-León, E. Cázares-Hernández & L. Sánchez-Higueredo, 2010. Indicators of recovery in a tropical freshwater marsh invaded by an African grass. Ecological Restoration 20(3): 324–332.

    Article  Google Scholar 

  • López Rosas, H., V. E. Espejel González & P. Moreno-Casasola, 2021. Variaciones espacio-temporales del nivel y salinidad del agua afectan la composición de especies del manglar-tular. Ecosistemas y Recursos Agropecuarios 8(1): 2674. https://doi.org/10.19136/era.a8nI.2674.

    Article  Google Scholar 

  • Lugo, A. E. & S. C. Snedaker, 1974. The ecology of mangroves. Annual Review of Ecology and Systematics 5: 39–64.

    Article  Google Scholar 

  • McKee, K. L., D. R. Cahoon & I. C. Feller, 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography 16(5): 545–556.

    Article  Google Scholar 

  • Minchin, P. R., 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69: 89–108.

    Article  Google Scholar 

  • Mitsch, W. J. & J. Gosselink, 2007. Wetlands, 4th ed. John Wiley & Sons Inc., New York.

    Google Scholar 

  • Mitsch, W. J., J. R. Taylor & K. B. Benson, 1991. Estimating primary productivity of forested wetland communities in different hydrologic landscapes. Landscape Ecology 5: 75–92.

    Article  Google Scholar 

  • Moreno-Casasola, P., 2008. Los humedales en México: tendencias y oportunidades. Cuadernos De Biodiversidad 28: 10–18.

    Article  Google Scholar 

  • Moreno-Casasola, P., E. Cejudo, R. Monroy, D. Infante Mata, H. López Rosas, L. A. Peralta Peláez, I. Neri Flores, G. Castillo-Campos, C. Madero Vega, A. Capistrán, M. Rincón & S. Pérez Torres, 2016. Manglares, selvas inundables y humedales herbáceos. In Moreno-Casasola, P. (ed) Servicios Ecosistémicos de Selvas y Bosques Costeros de Veracruz. Costa Sustentable no 8. INECOL/ITTO/CONAFOR/INECC, Xalapa: 76–94.

  • Moreno-Casasola, P., M. E. Hernández & A. Campos, 2017. Hydrology, soil carbon sequestration and water retention along a coastal wetland gradient in the Alvarado lagoon system, Veracruz, Mexico. Journal of Coastal Research 77: 104–115.

    Article  CAS  Google Scholar 

  • Mumby, P. J., A. J. Edwards, J. E. Arias-González, K. C. Lindeman, P. G. Blackwell, A. Gall, M. I. Gorczynska, A. R. Harborne, C. L. Pescod, H. Renken, C. C. C. Wabnitz & G. Llewellyn, 2004. Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427: 533–536.

    Article  CAS  PubMed  Google Scholar 

  • Mund, M., W. L. Kutsch, C. Wirth, T. Kahl, A. Knohl, M. V. Skomarkova & E. D. Schulze, 2010. The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest. Tree Physiology 30(6): 689–704.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, D. L. & M. A. Brock, 2009. Modified water regime and salinity as a consequence of climate change: prospects for wetlands of Southern Australia. Climatic Change 95(3-4): 523–533.

    Article  CAS  Google Scholar 

  • Novelo, A. & L. Ramos, 2005. Vegetación acuática. In: Bueno, J., F. Álvarez and S. Santiago (eds) Biodiversidad del Estado de Tabasco. Instituto de Biología, UNAM/CONABIO, México, D. F.: 111–144.

  • Novelo-Retana, A., 2006. Plantas Acuáticas de la Reserva de la Biosfera Pantanos de Centla. CONABIO/CONANP/Espacios Naturales y Desarrollo Sustentable A.C./Instituto de Biología, UNAM/PEMEX, México, D.F.

  • Olmsted, I., 1993. Wetlands of Mexico. In Whigham, D. F., D. Dykyjová & S. Hejný (eds), Wetlands of the World I: Inventory, Ecology and Management Kluwer Academic Publishers, Dordrecht: 637–677.

    Google Scholar 

  • Peralta Peláez, L. A., D. M. Infante Mata & P. Moreno-Casasola, 2009. Construcción e instalación de piezómetros. In: Moreno-Casasola, P. and B. Warner (eds) Breviario para Describir, Observar y Manejar Humedales. Serie Costa Sustentable no 1. RAMSAR/INECOL/CONANP/US Fish and Wildlife Service/US State Department, Xalapa: 17–30.

  • Pierfelice, K. N., B. G. Lockaby, K. W. Krauss, W. H. Conner, G. B. Noe & M. C. Ricker, 2015. Salinity influences on aboveground and belowground net primary productivity in tidal wetlands. Journal of Hydrologic Engineering 22(1): D5015002. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001223.

    Article  Google Scholar 

  • Ratti, J. T. & E. O. Garton, 1996. Research and experimental design. In Bookhout, T. A. (ed), Research and Management Techniques for Wildlife and Habitats The Wildlife Society, Maryland: 1–23.

    Google Scholar 

  • Richardson, C. J. & J. Vymazal, 2001. Sampling macrophytes in wetlands. In Rader, R. B., D. P. Batzer & S. A. Wissinger (eds), Bioassessment and Management of North American Freshwater Wetlands Wiley, New York: 297–338.

    Google Scholar 

  • Rincón Pérez, M., D. Infante-Mata, P. Moreno-Casasola, M. E. Hernández Alarcón, E. Barba Macias & J. R. García-Alfaro, 2020. Patrones de distribución y estructura de la vegetación en el gradiente de humedales costeros El Castaño, Chiapas. México. Revista de Biología Tropical 68(1): 242–259.

    Google Scholar 

  • Rodríguez-Zúñiga, M. T., C. Troche-Souza, A. D. Vázquez-Lule, J. D. Márquez-Mendoza, B. Vázquez-Balderas, L. Valderrama-Landeros, S. Velázquez-Salazar, M- I. Cruz-López, R. Ressl, A. Uribe-Martínez, S. Cerdeira-Estrada, J. Acosta-Velázquez, J. Díaz-Gallegos, R. Jiménez-Rosenberg, L. Fueyo-Mac Donald & C. Galindo-Leal, 2013. Manglares de México: Extensión, Distribución y Monitoreo. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México D. F.

  • Rosas Urióstegui, F. I., J. M. Pat Fernández, L. A. Pat Fernández & J. C. van der Wal, 2018. The effect of oil palm on income strategies and food security of households in rural communities in Campeche, Mexico. Acta Universitaria 28(3): 25–32.

    Article  Google Scholar 

  • Sadat-Noori, M., D. T. Maher & I. R. Santos, 2016. Groundwater discharge as a source of dissolved carbon and greenhouse gases in a subtropical estuary. Estuaries and Coasts 39: 639–656.

    Article  CAS  Google Scholar 

  • Saintilan, N., K. Rogers, J. J. Kelleway, E. Ens & D. R. Sloane, 2019. Climate change impacts on the coastal wetlands of Australia. Wetlands 39: 1145–1154. https://doi.org/10.1007/s13157-018-1016-7.

    Article  Google Scholar 

  • Sánchez-Higueredo, L. E., J. A. Ramos-Leal, J. Morán-Ramírez, P. Moreno-Casasola, U. Rodríguez-Robles & M. E. Hernández, 2020. Ecohydrogeochemical functioning of coastal freshwater herbaceous wetlands in the protected natural area, Ciénaga del Fuerte (American tropics): spatiotemporal behavior. Ecohydrology 13(2): e2173. https://doi.org/10.1002/eco.2173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santini, N. S., R. Reef, D. A. Lockington & C. E. Lovelock, 2015. The use of fresh and saline water sources by the mangrove Avicennia marina. Hydrobiologia 745(1): 59–68.

    Article  CAS  Google Scholar 

  • Sievers, M., R. M. Pearson, M. P. Turschwell, M. J. Bishop, L. Bland, C. J. Brown, V. J. D. Tulloch, J. A. Haig, A. D. Olds, P. S. Maxwell & R. M. Connolly, 2020. Integrating outcomes of IUCN red list of ecosystems assessments for connected coastal wetlands. Ecological Indicators 116: 106489. https://doi.org/10.1016/j.ecolind.2020.106489.

    Article  Google Scholar 

  • Simpson, L. T., J. A. Cherry, R. S. Smith & I. C. Feller, 2021. Mangrove encroachment alters decomposition rate in saltmarsh through changes in litter quality. Ecosystems 24: 840–854. https://doi.org/10.1007/s10021-020-00554-z.

    Article  CAS  Google Scholar 

  • Sjogersten, S., B. Batista de la Barruda, C. Brown, D. Boyd, H. Lopez-Rosas, E. Hernández, M. Rincón, C. Vane, V. Moss-Hayes, J. Hoyos-Santillan & P. Moreno-Casasola, 2021. Coastal wetland ecosystems deliver large carbon stocks in tropical Mexico. Geoderma 403(dic): 115173. https://doi.org/10.1016/j.geoderma.2021.115173.

    Article  CAS  Google Scholar 

  • Snedden, G. A., K. Cretini & B. Patton, 2015. Inundation and salinity impacts to above- and belowground productivity in Spartina patens and Spartina alterniflora in the Mississippi River deltaic plain: implications for using river diversions as restoration tools. Ecological Engineering 81: 133–139.

    Article  Google Scholar 

  • Thorhaug, A. L., H. M. Poulos, J. López-Portillo, J. Barr, A. L. Lara-Domínguez, T. C. Ku & G. Berlyn, 2019. Gulf of Mexico estuarine blue carbon stock, extent and flux: Mangroves, marshes, and seagrasses: A North American hotspot. Science of the Total Environment 653: 1253–1261. https://doi.org/10.1016/j.scitotenv.2018.10.011.

    Article  CAS  PubMed  Google Scholar 

  • Torres, J. R., E. Barba & F. J. Choix, 2018. Mangrove productivity and phenology in relation to hydroperiod and physical-chemistry properties of water and sediment in biosphere reserve, Centla wetland, Mexico. Tropical Conservation Science 11: 1–14.

    Article  Google Scholar 

  • Unsworth, R. K. F., P. S. de León, S. L. Garrard, J. Jompa, D. J. Smith & J. J. Bell, 2008. High connectivity of Indo-Pacific seagrass fish assemblages with mangrove and coral reef habitats. Marine Ecology Progress Series 353: 213–224.

    Article  Google Scholar 

  • Valdez Hernández, J. I., 2002. Aprovechamiento forestal de manglares en el estado de Nayarit, costa Pacífica de México. Maderas y Bosques 8(Special issue 1): 129–145.

    Google Scholar 

  • Venterink, H. O., T. E. Davidsson, K. Kiehl & L. Leonardson, 2002. Impact of drying and rewetting on N, P and K dynamics in a wetland soil. Plant and Soil 243(1): 119–130.

    Article  CAS  Google Scholar 

  • Visschers, L. L. B., C. D. Santos & A. M. A. Franco, 2022. Accelerated migration of mangroves indicate large-scale saltwater intrusion in Amazon coastal wetlands. Science of the Total Environment 836: 155679. https://doi.org/10.1016/j.scitotenv.2022.155679.

    Article  CAS  PubMed  Google Scholar 

  • Vogt, K. A., D. J. Vogt & J. Bloomfield, 1998. Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200: 71–89.

    Article  CAS  Google Scholar 

  • Ward, G. A., T. J. Smith, K. R. Whelan & T. W. Doyle, 2006. Regional processes in mangrove ecosystems: spatial scaling relationships, biomass, and turnover rates following catastrophic disturbance. Hydrobiologia 569(1): 517–527.

    Article  Google Scholar 

  • Webb, J. R., I. R. Santos, D. T. Maher, D. R. Tait, T. Cyronak, M. Sadat-Noori, P. Macklin & L. C. Jeffrey, 2019. Groundwater as a source of dissolved organic matter to coastal waters: Insights from radon and CDOM observations in 12 shallow coastal systems. Limnology and Oceanography 64: 182–196.

    Article  CAS  Google Scholar 

  • Williams, C. O., R. Lowrance, D. D. Bosch, J. R. Williams, E. Benham, A. Dieppa, R. Hubbard, E. Mas, T. Potter, D. Sotomayor, E. M. Steglich, T. Strickland & R. G. Williams, 2013. Hydrology and water quality of a field and riparian buffer adjacent to a mangrove wetland in Jobos Bay watershed, Puerto Rico. Ecological Engineering 56: 60–68.

    Article  Google Scholar 

  • Yando, E. S., M. J. Osland, J. M. Willis, R. H. Day, K. W. Krauss & M. W. Hester, 2016. Salt marsh-mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant–soil interactions and ecosystem carbon pools. Journal of Ecology 104: 1020–1031.

    Article  CAS  Google Scholar 

  • Yang, S. C., S. S. Shih, G. W. Hwang, J. B. Adams, H. Y. Lee & C. P. Chen, 2013. The salinity gradient influences on the inundation tolerance thresholds of mangrove forests. Ecological Engineering 51: 59–65.

    Article  Google Scholar 

  • Zar, J. H., 2009. Biostatistical Analysis, 5th ed. Prentice Hall, New Jersey.

    Google Scholar 

  • Zedler, J. B. & J. C. Callaway, 2001. Tidal wetland restoration: physical and ecological processes. Journal of Coastal Research 27: 38–64.

    Google Scholar 

  • Zedler, J. B. & S. Kercher, 2005. Wetland resources: Status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources 30: 39–74.

    Article  Google Scholar 

  • Zhai, L., K. W. Krauss, X. Liu, J. A. Duberstein, J. A. Duberstein, W. Conner, D. L. DeAngelis & Ld. S. L. Sternberg, 2018. Growth stress response to sea level rise in species with contrasting functional traits: a case study in tidal freshwater forested wetlands. Environmental and Experimental Botany 155: 378–386.

    Article  Google Scholar 

Download references

Acknowledgements

To the Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) for financing projects LM001 and LM020. To Roberto Monroy for preparing the map of the study site. To the students of Marine Biology at the Universidad del Carmen (UNACAR) for their voluntary support in the field work and in the laboratory: Cinthia F. Arjona Jiménez, Yammilet D. Balboa Nieto, Claudia M. Bello de la Cruz, Pedro Castellano Pérez, Andrés Cruz Quintana, Johnny C. de la Cruz Dantorie, Monserrat Medina Acevedo, Kevin D. Méndez Martínez, Daniel A. Tovar Montalvo. To Citlalli G. Garrido Abreu and Thelma P. López García, for their technical support.

Funding

This study was supported by the Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) fundings (projects LM001 and LM020).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and Methodology: HLR, VEEG, and PMC; Field work: HLR and VEEG; Analysis of data: HLR; Writing and Original draft preparation: HLR, VEEG, and PMC. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hugo López Rosas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Erik Jeppesen, Miguel Cañedo-Argüelles, Sally Entrekin, Judit Padisák & S.S.S. Sarma / Effects of induced changes in salinity on inland and coastal water ecosystems

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López Rosas, H., Espejel González, V.E. & Moreno-Casasola, P. Decreases in mangrove productivity and marsh die-off due to temporary increase in salinity, a case in Mexico. Hydrobiologia 850, 4497–4514 (2023). https://doi.org/10.1007/s10750-023-05187-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05187-6

Keywords

Navigation