Skip to main content
Log in

Rapid adjustment of cone opsin expression profiles may help Western mosquitofish (Gambusia affinis) maintain foraging efficiency in distinct light environments

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Vertebrates rely on two special groups of photoreceptor cells (rods and cones) in the retina to receive visual information. Five opsin families in the outer segment of cone cells endow fishes with color vision. Fishes encounter diverse light environments in water (various light wavelengths and intensities), so they have evolved differing numbers and amino acid compositions of cone opsin genes and, in some, phenotypic plasticity in their expression profiles to quickly adjust to new light environments. However, clear evidence for a correlation between phenotypic plasticity in cone opsin expression and adaptation is lacking. The Western mosquitofish is a highly invasive species that colonizes diverse habitats. Here, by quantifying cone opsin expression levels of individuals experiencing distinct light conditions at different developmental stages, I show that the cone opsin expression profile of juvenile and adult Western mosquitofish can quickly react to altered photic properties. Moreover, a predation experiment also demonstrates that Western mosquitofish can maintain foraging efficiency under distinct light environments. Thus, phenotypic plasticity in cone opsin expression profiles may represent a crucial trait by which Western mosquitofish successfully colonize such a wide range of aquatic habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahams, M. V., D. K. Bassett & J. C. Montgomery, 2017. Sensory biology as a risk factor for invasion success and native fish decline. Transactions of the American Fisheries Society 146: 1238–1244.

    Article  Google Scholar 

  • Cano-Rocabayera, O., S. Vargas-Amengual, C. Aranda & A. d. Sostoa & A. Maceda-Veiga, 2020. Mosquito larvae consumption in turbid waters: the role of the type of turbidity and the larval stage in native and invasive fish. Hydrobiologia 847: 1371–1381.

    Article  Google Scholar 

  • Chang, C.-H., J. Catchen, R. L. Moran, A. G. Rivera-Colón, Y.-C. Wang & R. C. Fuller, 2021. Sequence analysis and ontogenetic expression patterns of cone opsin genes in the bluefin killifish (Lucania goodei). Journal of Heredity 112: 357–366.

    Article  CAS  PubMed  Google Scholar 

  • Chang, C.-H., C.-C. Chiao & H. Y. Yan, 2009. Ontogenetic changes in color vision in the milkfish (Chanos chanos Forsskål, 1775). Zoological Science 26: 349–355.

    Article  PubMed  Google Scholar 

  • Chang, C.-H., Y.-C. Wang, D.-C. Lee, H.-C. Yang & S.-H. Liu, 2019. Mitochondrial DNA authenticates Gambusia affinis (Baird and Girard, 1853) as the invasive mosquitofish in Taiwan. BioInvasions Records 8: 933–941.

    Article  Google Scholar 

  • Chang, C.-H., Y.-C. Wang, Y. T. Shao & S.-H. Liu, 2020. Phylogenetic analysis and ontogenetic changes in the cone opsins of the western mosquitofish (Gambusia affinis). PLoS ONE 15: e0240313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, C.-H. & H. Y. Yan, 2019. Plasticity of opsin gene expression in the adult red shiner (Cyprinella lutrensis) in response to turbid habitats. PLoS One 14: e0215376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman, B. B., L. J. Morrell, C. R. Tosh & J. Krause, 2010. Behavioural consequences of sensory plasticity in guppies. Proceedings of the Royal Society b: Biological Science 277: 1395–1401.

    Article  Google Scholar 

  • Cheng, C. L. & I. N. Flamarique, 2004. Opsin expression: new mechanism for modulating colour vision. Nature 428: 279.

    Article  CAS  PubMed  Google Scholar 

  • Cortesi, F., Z. Musilová, S. M. Stieb, N. S. Hart, U. E. Siebeck, M. Malmstrøm, O. K. Tørresen, S. Jentoft, K. L. Cheney, N. J. Marshall, K. L. Carleton & W. Salzburger, 2015. Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes. Proceedings of the National Academy of Sciences 112: 1493–1498.

    Article  CAS  Google Scholar 

  • Cronin, T. W., S. Johnsen, N. J. Marshall & E. J. Warrant, 2014. Visual Ecology, Princeton University Press, Princeton, New Jersey:

    Book  Google Scholar 

  • Dalton, B. E. & F. d. Busserolles, N. J. Marshall & K. L. Carleton, 2017. Retinal specialization through spatially varying cell densities and opsin coexpression in cichlid fish. Journal of Experimental Biology 220: 266–277.

    PubMed  PubMed Central  Google Scholar 

  • Dalton, B. E., E. R. Loew, T. W. Cronin & K. L. Carleton, 2014. Spectral tuning by opsin coexpression in retinal regions that view different parts of the visual field. Proceedings of the Royal Society b: Biological Science 281: 20141980.

    Article  Google Scholar 

  • Ehlman, S. M., B. A. Sandkam, F. Breden & A. Sih, 2015. Developmental plasticity in vision and behavior may help guppies overcome increased turbidity. Journal of Comparative Physiology A 201: 1125–1135.

    Article  Google Scholar 

  • Escobar-Camacho, D., E. Ramos, C. Martins & K. L. Carleton, 2017. The opsin genes of amazonian cichlids. Molecular Ecology 26: 1343–1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escobar-Camacho, D., K. L. Carleton, D. W. Narain & M. E. R. Pierotti, 2020. Visual pigment evolution in Characiformes: the dynamic interplay of teleost whole-genome duplication, surviving opsins and spectral tuning. Molecular Ecology 29: 2234–2253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabrin, T. M. C., L. S. Gasques, Rodrigo Junio, S. M. A. P. da Graça, W. J. Prioli & d. Graça & A. J. Prioli, 2021. Positive selection of the long-wavelength opsin gene in South American cichlid fishes. Hydrobiologia 848: 3805–3815.

    Article  CAS  Google Scholar 

  • Flamarique, I. N., 2013. Opsin switch reveals function of the ultraviolet cone in fish foraging. Proceedings of the Royal Society b: Biological Science 280: 20122490.

    Article  Google Scholar 

  • Flamarique, I. N., 2016. Diminished foraging performance of a mutant zebrafish with reduced population of ultraviolet cones. Proceedings of the Royal Society b: Biological Science 283: 20160058.

    Article  Google Scholar 

  • Friesen, C. N., M. E. Ramsey & M. E. Cummings, 2017. Differential sensitivity to estrogen-induced opsin expression in two poeciliid freshwater fish species. General and Comparative Endocrinology 246: 200–210.

    Article  CAS  PubMed  Google Scholar 

  • Fryxell, D. C., E. R. Moffett, M. T. Kinnison, K. S. Simon & E. P. Palkovacs, 2022. From southern swamps to cosmopolitan model: humanity’s unfinished history with mosquitofish. Fish and Fisheries 23: 143–161.

    Article  Google Scholar 

  • Fuller, R. C., K. L. Carleton, J. M. Fadool, T. C. Spady & J. Travis, 2004. Population variation in opsin expression in the bluefin killifish, Lucania goodei: a real-time PCR study. Journal of Comparative Physiology A 190: 147–154.

    Article  CAS  Google Scholar 

  • Fuller, R. C., K. L. Carleton, J. M. Fadool, T. C. Spady & J. Travis, 2005. Genetic and environmental variation in the visual properties of bluefin killifish, Lucania goodei. Journal Evolutionay Biology 18: 516–523.

    Article  CAS  Google Scholar 

  • Fuller, R. C. & K. M. Claricoates, 2011. Rapid light-induced shifts in opsin expression: finding new opsins, discerning mechanisms of change, and implications for visual sensitivity. Molecular Ecology 20: 3321–3335.

    Article  CAS  PubMed  Google Scholar 

  • Härer, A., N. Karagic, A. Meyer & J. Torres-Dowdall, 2019. Reverting ontogeny: rapid phenotypic plasticity of colour vision in cichlid fish. Royal Society Open Science 6: 190841.

    Article  PubMed  PubMed Central  Google Scholar 

  • Härer, A., J. Torres-Dowdall & A. Meyer, 2017. Rapid adaptation to a novel light environment: the importance of ontogeny and phenotypic plasticity in shaping the visual system of Nicaraguan Midas cichlid fish (Amphilophus citrinellus spp.). Molecular Ecology 26: 5582–5593.

    Article  PubMed  Google Scholar 

  • Harrison, X. A., 2014. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2: e616.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hauser, F. E. & B. S. Chang, 2017. Insights into visual pigment adaptation and diversity from model ecological and evolutionary systems. Current Opinion Genetics & Development 47: 110–120.

    Article  CAS  Google Scholar 

  • Hauser, F. E., K. L. Ilves, R. K. Schott, E. Alvi, H. López-Fernández & B. S. W. Chang, 2021. Evolution, inactivation and loss of short wavelength-sensitive opsin genes during the diversification of Neotropical cichlids. Molecular Ecology 30: 1688–1703.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann, C. M., N. J. Marshall, K. Abdilleh, Z. Patel, U. E. Siebeck & K. L. Carleton, 2012. Opsin evolution in damselfish: convergence, reversal, and parallel evolution across tuning sites. Journal of Molecular Evolution 75: 79–91.

    Article  CAS  PubMed  Google Scholar 

  • Johnsen, S. & E. A. Widder, 2001. Ultraviolet absorption in transparent zooplankton and its implications for depth distribution and visual predation. Marine Biology 138: 717–730.

    Article  Google Scholar 

  • Kasagi, S., K. Mizusawa & A. Takahashi, 2018. Green-shifting of SWS2A opsin sensitivity and loss of function of RH2-A opsin in flounders, genus Verasper. Ecology and Evolution 8: 1399–1410.

    Article  PubMed  Google Scholar 

  • Kimbell, H. S., B. B. Chapman, K. E. Dobbinson & L. J. Morrell, 2019. Foraging guppies can compensate for low-light conditions, but not via a sensory switch. Behavioural Ecology and Sociobiology 73: 32.

    Article  Google Scholar 

  • Kirk, J. T. O., 1977a. Attenuation of light in natural waters. Australian Journal of Marine and Freshwater Research 28: 497–508.

    Article  Google Scholar 

  • Kirk, J. T. O., 1977b. Use of a quanta meter to measure attenuation and underwater reflectance of photosynthetically active radiation in some inland and coastal south-eastern Australian waters. Australian Journal of Marine and Freshwater Research 28: 9–21.

    Article  Google Scholar 

  • Kodama, I., A. Yamanaka, K. Endo & Y. Koya, 2008. Role of the yellow spot around the urogenital opening of female mosquitofish (Gambusia affinis) as a cue for copulation. Zoological Science 25: 1199–1204.

    Article  PubMed  Google Scholar 

  • Kranz, A. M., L. G. Forgan, G. L. Cole & J. A. Rndler, 2018. Light environment change induces differential expression of guppy opsins in a muti-generational evolution experiment. Evolution 72: 1656–1676.

    Article  CAS  Google Scholar 

  • Langerhans, R. B., C. A. Layman, A. M. Shokrollahi & T. J. DeWitt, 2007. Predator-driven phenotypic diversification in Gambusia affinis. Evolution 58: 2305–2318.

    Google Scholar 

  • Laver, C. R. J. & J. S. Taylor, 2011. RT-qPCR reveals opsin gene upregulation associated with age and sex in guppies (Poecilia reticulata) - a species with color-based sexual selection and 11 visual-opsin genes. BMC Evolutionary Biology 11: 81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, F., K. S. Simon & G. L. W. Perry, 2018. Prey selectivity and ontogenetic diet shift of the globally invasive western mosquitofish (Gambusia affinis) in agriculturally impacted streams. Ecology of Freshwater Fish 27: 822–833.

    Article  Google Scholar 

  • Leech, D. M., W. J. Boeing, S. L. Cooke, C. E. Williamson & L. Torres, 2009. UV-enhanced fish predation and the differential migration of zooplankton to UV radiation and fish. Limnology Oceanography 54: 1152–1161.

    Article  CAS  Google Scholar 

  • Levine, J. S. & E. F. MacNichol, 1979. Visual pigments in teleost fishes: effects of habitat, microhabitat, and behavior on visual system evolution. Sensory Processes 3: 95–135.

    CAS  PubMed  Google Scholar 

  • Lin, J.-J., F.-Y. Wang, W.-H. Li & T.-Y. Wang, 2017. The rises and falls of opsin genes in 59 ray-finned fish genomes and their implications for environmental adaptation. Scientific Reports 7: 15568.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, G., Y. Cai, T. Philippi, P. Kalla, D. Scheidt, J. Richards, L. Scinto & C. Appleby, 2008. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: implications for mercury bioaccumulation. Environmental Pollution 153: 257–265.

    Article  CAS  PubMed  Google Scholar 

  • Loew, E. R. & J. N. Lythgoe, 1978. The ecology of cone pigments in teleost fishes. Vision Research 18: 715–722.

    Article  CAS  PubMed  Google Scholar 

  • Losey, G. S., T. W. Cronin, T. H. Goldsmith, D. Hyde, N. J. Marshall & W. N. McFarland, 1999. The UV visual world of fishes: a review. Journal of Fish Biology 54: 921–943.

    Article  Google Scholar 

  • Luehrmann, M., S. M. Stieb, K. L. Carleton, A. Pietzker, K. L. Cheney & N. J. Marshall, 2018. Short-term colour vision plasticity on the reef: changes in opsin expression under varying light conditions differ between ecologically distinct fish species. Journal of Experimental Biology 221: 175281.

    Article  Google Scholar 

  • Lythgoe, J. N., 1984. Visual pigments and environmental light. Vision Research 24: 1539–1550.

    Article  CAS  PubMed  Google Scholar 

  • Marques, D. A., J. S. Taylor, F. C. Jones, F. D. Palma, D. M. Kingsley & T. E. Reimchen, 2017. Convergent evolution of SWS2 opsin facilitates adaptive radiation of threespine stickleback into different light environments. PLoS Biology 15: e2001627.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumoto, Y., S. Oda, H. Mitani & S. Kawamura, 2020. Orthologous divergence and paralogous anticonvergence in molecular evolution of triplicated green opsin genes in medaka fish, genus Oryzias. Genome Biology and Evolution 12: 911–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy, M. J. & E. L. Westerman, 2022. Evolutionary history limits species’ ability to match colour sensitivity to available habitat light. Proceedings of the Royal Society b: Biological Science 289: 20220612.

    Article  Google Scholar 

  • Musilova, Z., A. Indermaur, A. R. Bitja-Nyom, D. Omelchenko, M. Kłodawska, L. Albergati, K. Remišová & W. Salzburger, 2019. Evolution of the visual sensory system in cichlid fishes from crater lake Barombi Mbo in Cameroon. Molecular Ecology 28: 5010–5031.

    Article  PubMed  Google Scholar 

  • Musilova, Z., W. Salzburger & F. Cortesi, 2021. The visual opsin gene repertoires of teleost fishes: evolution, ecology, and function. Annual Review of Cell and Developmental Biology 37: 1–28.

    Article  Google Scholar 

  • Musser, J. M. & D. Arendt, 2017. Loss and gain of cone types in vertebrate ciliary photoreceptor evolution. Developmental Biology 431: 26–35.

    Article  CAS  PubMed  Google Scholar 

  • Nandamuri, S. P., M. R. Yourick & K. L. Carleton, 2017. Adult plasticity in African cichlids: rapid changes in opsin expression in response to environmental light differences. Molecular Ecology 26: 6036–6052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nettle, D. & M. Bateson, 2015. Adaptive developmental plasticity: what is it, how can we recognize it and when can it evolve. Proceedings of the Royal Society b: Biological Science 282: 20151005.

    Article  Google Scholar 

  • Orger, M. B. & H. Baier, 2005. Channeling of red and green cone inputs to the zebrafish optomotor response. Visual Neuroscience 22: 275–281.

    Article  PubMed  Google Scholar 

  • Pohlmann, K., J. Atema & T. Breithaupt, 2004. The importance of the lateral line in nocturnal predation of piscivorous catfish. Journal of Experimental Biology 207: 2971–2978.

    Article  PubMed  Google Scholar 

  • Pohlmann, K., F. W. Grasso & T. Breithaupt, 2001. Tracking wakes: the nocturnal predatory strategy of piscivorous catfish. Proceedings of the National Academy of Sciences 98: 7371–7374.

    Article  CAS  Google Scholar 

  • Polverino, G., J. C. Liao & M. Porfiri, 2013. Mosquitofish (Gambusia affinis) preference and behavioral response to animated images of conspecifics altered in their color, aspect ratio, and swimming depth. PLoS ONE 8: e54315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyke, G. H., 2005. A review of the biology of Gambusia affinis and G. holbrooki. Reviews in Fish Biology and Fisheries 15: 339–365.

    Article  Google Scholar 

  • Rajasekharan, P. T. & B. N. Chowdaiah, 1972. Selective feeding behaviour of Gambusia affinis. Oecologia 11: 79–81.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, S. R. & G. Kote, 1975. Predatory behavior of Gambusia affinis in relation to different light colors. Physiology and Behavior 14: 255–257.

    Article  CAS  PubMed  Google Scholar 

  • Rennison, D. J., G. L. Owens, N. Heckman, D. Schluter & T. Veen, 2016. Rapid adaptive evolution of colour vision in the threespine stickleback radiation. Proceedings of the Royal Society b: Biological Science 283: 20160242.

    Article  Google Scholar 

  • Rodríguez, C. F., E. Bécares & M. Fernández-Aláez, 2003. Shift from clear to turbid phase in Lake Chozas (NW Spain) due to the introduction of American red swamp crayfish (Procambarus clarkii). Hydrobiologia 506: 421–426.

    Article  Google Scholar 

  • Ruehl, C. B. & T. J. DeWitt, 2005. Trophic plasticity and fine-grained resource variation in populations of western mosquitofish, Gambusia affinis. Evolutionary Ecology Research 7: 801–819.

    Google Scholar 

  • Russo, G., A. Chou, J. E. Rettig & G. R. Smith, 2008. Foraging responses of mosquitofish (Gambusia affinis) to Items of different sizes and colors. Journal of Freshwater Ecology 23: 677–678.

    Article  Google Scholar 

  • Sabbah, S., J. Hui, F. E. Hauser, W. A. Nelson & C. W. Hawryshyn, 2012. Ontogeny in the visual system of Nile tilapia. Journal of Experimental Biology 215: 2684–2695.

    Article  PubMed  Google Scholar 

  • Sakai, Y., H. Ohtsuki, S. Kasagi, S. Kawamura & M. Kawata, 2016. Effects of light environment during growth on the expression of cone opsin genes and behavioral spectral sensitivities in guppies (Poecilia reticulata). BMC Evolutionary Biology 16: 106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakai, Y., S. Kawamura & M. Kawata, 2018. Genetic and plastic variation in opsin gene expression, light sensitivity, and female response to visual signals in the guppy. Proceedings of the National Academy of Sciences 115: 12247–12252.

    Article  CAS  Google Scholar 

  • Sandkam, B., B. Dalton, F. Breden & K. Carleton, 2018. Reviewing guppy color vision: integrating the molecular and physiological variation in visual tuning of a classic system for sensory drive. Current Zoology 64: 535–545.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seehausen, O., 2015. Beauty varies with the light. Nature 521: 34–35.

    Article  CAS  PubMed  Google Scholar 

  • Seehausen, O., Y. Terai, I. S. Magalhaes, K. L. Carleton, H. D. J. Mrosso, R. Miyagi, I. van der Sluijs, M. V. Schneider, M. E. Maan, H. Tachida, H. Imai & N. Okada, 2008. Speciation through sensory drive in cichlid fish. Nature 455: 620–626.

    Article  CAS  PubMed  Google Scholar 

  • Shao, Y. T., F.-Y. Wang, W.-C. Fu, H. Y. Yan, K. Anraku, I.-S. Chen & B. Borg, 2014. Androgens increase lws opsin expression and red sensitivity in male three-spined sticklebacks. PLoS ONE 9: e100330.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sibeaux, A., M. L. Keser, G. L. Cole, A. M. Kranz & J. A. Endler, 2019. How viewing objects with the dorsal or ventral retina affects colour-related behaviour in guppies (Poecilia reticulata). Vision Research 158: 78–89.

    Article  PubMed  Google Scholar 

  • Smith, A. R., L. D’annunzio, A. E. Smith, A. Sharma, C. M. Hofmann, N. J. Marsall & K. L. Carleton, 2011. Intraspecific cone opsin expression variation in the cichlids of Lake Malawi. Molecular Ecology 20: 299–310.

    Article  PubMed  Google Scholar 

  • Smith, A. R., K. Ma, D. Soares & K. L. Carleton, 2012. Relative LWS cone opsin expression determines optomotor thresholds in Malawi cichlid fish. Genes, Brain and Behavior 11: 185–192.

    Article  CAS  PubMed  Google Scholar 

  • Snell-Rood, E. C., 2013. An overview of the evolutionary causes and consequences of behavioural plasticity. Animal Behaviour 85: 1004–1011.

    Article  Google Scholar 

  • Stieb, S. M., K. L. Chareton, F. Cortesi, N. J. Marshall & W. Salzburger, 2016. Depth-dependent plasticity in opsin gene expression varies between damselfish (Pomacentridae) species. Molecular Ecology 25: 3645–3661.

    Article  CAS  PubMed  Google Scholar 

  • Stockwell, C. A. & S. C. Weeks, 1999. Translocations and rapid evolutionary responses in recently established populations of western mosquitofish (Gambusia affinis). Animal Conservation 2: 103–110.

    Article  Google Scholar 

  • Tałanda, J., P. Maszczyk & E. Babkiewicz, 2018. The reaction distance of a planktivorous fish (Scardinius erythrophthalmus) and the evasiveness of its prey (Daphnia pulex × pulicaria) under different artificial light spectra. Limnology 19: 311–319.

    Article  Google Scholar 

  • Tobler, M., S. W. Coleman, B. D. Perkins & G. G. Rosenthal, 2010. Reduced opsin gene expression in a cave-dwelling fish. Biology Letters 6: 98–101.

    Article  PubMed  Google Scholar 

  • Torres-Dowdall, J., N. Karagic, A. Härer & A. Meyer, 2021. Diversity in visual sensitivity across Neotropical cichlid fishes via differential expression and intraretinal variation of opsin genes. Molecular Ecology 30: 1880–1891.

    Article  CAS  PubMed  Google Scholar 

  • Tsurui-Sato, K., S. Fujimoto, O. Deki, T. Suzuki, H. Tatsuta & K. Tsuji, 2019. Reproductive interference in live-bearing fish: the male guppy is a potential biological agent for eradicating invasive mosquitofish. Scientific Reports 9: 5439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veen, T., C. Brock, D. Rennison & D. Bolnick, 2017. Plasticity contributes to a fine-scale depth gradient in sticklebacks’ visual system. Molecular Ecology 26: 4339–4350.

    Article  PubMed  Google Scholar 

  • Watson, C. T., S. M. Gray, M. Hoffmann, K. P. Lubieniecki, J. B. Joy, B. A. Sandkam, D. Weigel, E. Loew, C. Dreyer, W. S. Davidson & F. Breden, 2011. Gene duplication and divergence of long wavelength-sensitive opsin genes in the guppy, Poecilia reticulata. Journal of Molecular Evolution 72: 240–322.

    Article  CAS  PubMed  Google Scholar 

  • Watson, C. T., K. P. Lubieniecki, E. Loew, W. S. Davidson & F. Breden, 2010. Genomic organization of duplicated short wave-sensitive and long wave-sensitive opsin genes in the green swordtail, Xiphophorus helleri. BMC Evolutionary Biology 10: 87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright, D. S. & R. v. Eijk, L. Schuart, O. Seehausen, T. G. G. Groothuis & M. E. Maan, 2020. Testing sensory drive speciation in cichlid fish: linking light conditions to opsin expression, opsin genotype and female mate preference. Journal of Evolutionary Biology 33: 422–434.

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama, S., 2000. Molecular evolution of vertebrate visual pigments. Progress in Retinal and Eye Research 19: 385–491.

    Article  CAS  PubMed  Google Scholar 

  • Yoshimatsu, T., C. Schröder, N. E. Nevala, P. Berens & T. Baden, 2020. Fovea-like photoreceptor specializations underlie single UV cone driven prey-capture behavior in zebrafish. Neuron 107: 320-337.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zukoshia, R., I. Savellia & I. N. Flamarique, 2018. Foraging performance of two fishes, the threespine stickleback and the Cumaná guppy, under different light backgrounds. Vision Research 145: 31–38.

    Article  Google Scholar 

Download references

Acknowledgements

The author was supported by grants from the Ministry of Science and Technology, Taiwan (MOST 110-2621-B-029-005, 110-2621-B-152-001, 111-2621-B52-001-MY2). Dr. Yi Ta Shao at the Institute of Marine Biology (National Taiwan Ocean University) and Dr. Yung-Che Tseng at the Institute of Cellular and Organismic Biology (Academia Sinica) provided technical assistance. Mr. Chih-Chiang Lee and Ms. Ting-Ting Huang helped take care of the experimental animals and in collecting experimental data. Dr. John O’Brien provided editing assistance.

Author information

Authors and Affiliations

Authors

Contributions

C-HC conceived the project, was responsible for experimental animal care, data collection and analysis, and prepared the manuscript.

Corresponding author

Correspondence to Chia-Hao Chang.

Ethics declarations

Conflict of interest

The author declares that he has no competing interests.

Additional information

Handling editor: Cécile Fauvelot

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, CH. Rapid adjustment of cone opsin expression profiles may help Western mosquitofish (Gambusia affinis) maintain foraging efficiency in distinct light environments. Hydrobiologia 850, 1059–1071 (2023). https://doi.org/10.1007/s10750-023-05139-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05139-0

Keywords

Navigation