Skip to main content

Advertisement

Log in

Pondscape or waterscape? The effect on the diversity of dispersal along different freshwater ecosystems

  • Small Waterbodies
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Dispersal is a main determinant of community assembly. Landscape configurations of rivers, lakes, or ponds are often independently considered in this framework. However, these systems share species conforming to a waterscape with different environments coupled by dispersal. While empirical results support a main role of this coupling on biodiversity organization, it is difficult to assess its importance at large geographic scales. Using a theoretical approach, we quantified the potential role of dispersal through different freshwater ecosystems of the United Kingdom and Ireland on biogeographic diversity patterns. We implemented a coalescent model considering 11,131 communities connected by distance-dependent dispersal and with species that have different performances for recruitment in three different aquatic habitats. Biogeographic diversity patterns were estimated for each habitat alone or for the whole waterscape combining ephemeral, temporal, and permanent waters. The results indicated that the coupling between different types of environments fostered local diversity, in a magnitude that increased from the ephemeral to permanent waters and from poorer to richer communities. Furthermore, a strong spatial structure in the potential effect of dispersal among different freshwater environments was observed, indicating that freshwater biogeography was likely determined by the connection among freshwater ecosystems to a larger extent than previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

This manuscript has no associated data.

References

  • Altermatt, F., 2013. Diversity in riverine metacommunities: a network perspective. Aquatic Ecology 47: 365–377.

    Article  Google Scholar 

  • Arim, M. & O. Barbosa, 2002. Humped pattern of diversity: fact or artifact? Science 297: 1763. https://doi.org/10.1126/science.297.5588.1763a.

    Article  PubMed  Google Scholar 

  • Arntzen, J. W., C. Abrahams, W. R. M. Meilink, R. Iosif & A. Zuiderwijk, 2017. Amphibian decline, pond loss and reduced population connectivity under agricultural intensification over a 38 year period. Biodiversity and Conservation Springer, Netherlands 26: 1411–1430.

    Article  Google Scholar 

  • Barnett, K., & R. T. Belote, 2021. Modeling an aspirational connected network of protected areas across North America. Ecological Applications 31.https://doi.org/10.1002/eap.2387.

  • Bastin, L., N. Gorelick, S. Saura, B. Bertzky, G. Dubois, M. J. Fortin & J. F. Pekel, 2019. Inland surface waters in protected areas globally: current coverage and 30-year trends. PLoS ONE 14: 1–17.

    Article  Google Scholar 

  • Bender, M. G., F. Leprieur, D. Mouillot, M. Kulbicki, V. Parravicini, M. R. Pie, D. R. Barneche, L. G. R. Oliveira-Santos & S. R. Floeter, 2017. Isolation drives taxonomic and functional nestedness in tropical reef fish faunas. Ecography 40: 425–435.

    Article  Google Scholar 

  • Biggs, J., S. von Fumetti & M. Kelly-Quinn, 2017. The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia Springer International Publishing 793: 3–39.

    Google Scholar 

  • Boix, D., J. Kneitel, B. J. Robson, C. Duchet, L. Zúñiga, J. Day, S. Gascón, J. Sala, X. D. Quintana, & L. Blaustein, 2016. Invertebrates of freshwater temporary ponds in mediterranean climates. In Batzer, D. P., & D. Boix (eds), Invertebrates in Freshwater Wetlands. An international Perspective on their Ecology. Springer International Publishing, Cham: 141–190.

  • Borthagaray, A. I., M. Arim & P. A. Marquet, 2012. Connecting landscape structure and patterns in body size distributions. Oikos 121: 697–710.

    Article  Google Scholar 

  • Borthagaray, A. I., V. Pinelli, M. Berazategui, L. Rodríguez-Tricot, & M. Arim, 2015a. Effects of metacommunitity networks on local community structures: from theoretical predictions to empirical evaluations In Belgrano, A., G. Woodward, & U. Jacob (eds), Aquatic Functional Biodiversity. Academic Press, Oxford: 75–111.

  • Borthagaray, A. I., M. Berazategui, & M. Arim, 2015b. Disentangling the effects of local and regional processes on biodiversity patterns through taxon-contingent metacommunity network analysis. Oikos 124: 1383–1390. https://doi.org/10.1111/oik.01317.

  • Borthagaray, A. I., A. Soutullo, A. Carranza & M. Arim, 2018. A modularity-based approach for identifying biodiversity management units. Revista Chilena De Historia Natural Revista Chilena De Historia Natural 91: 11–15.

    Google Scholar 

  • Borthagaray, A. I., F. Teixeira-de Mello, G. Tesitore, E. Ortiz, M. Illarze, V. Pinelli, L. Urtado, P. Raftopulos, I. González-Bergonzoni, S. Abades, M. Loureiro, & M. Arim, 2020. Community isolation drives lower fish biomass and species richness, but higher functional evenness, in a river metacommunity. Freshwater Biology 1–15.

  • Brown, J. H. & A. Kodric-Brown, 1977. Turnover Rates in Insular Biogeography: effect of Immigration on Extinction. Ecology 58: 445–449.

    Article  Google Scholar 

  • Buono, V., A. M. Bissattini, & L. Vignoli, 2019. Can a cow save a newt? The role of cattle drinking troughs in amphibian conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 29: 964–975, https://doi.org/10.1002/aqc.3126.

  • Carrara, F., A. Rinaldo, A. Giometto & F. Altermatt, 2014. Complex interaction of dendritic connectivity and hierarchical patch size on biodiversity in river-like landscapes. American Naturalist 183: 13–25.

    Article  PubMed  Google Scholar 

  • Carroll, C., S. A. Parks, S. Z. Dobrowski & D. R. Roberts, 2018. Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America. Global Change Biology 24: 5318–5331.

    Article  PubMed  Google Scholar 

  • Céréghino, R., J. Biggs, B. Oertli & S. Declerck, 2008. The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597: 1–6.

    Article  Google Scholar 

  • Chase, J. M. & R. S. Shulman, 2009. Wetland isolation facilitates larval mosquito density through the reduction of predators. Ecological Entomology 34: 741–747.

    Article  Google Scholar 

  • Chase, J. M., A. Jeliazkov, E. Ladouceur & D. S. Viana, 2020. Biodiversity conservation through the lens of metacommunity ecology. Annals of the New York Academy of Sciences 1469: 86–104.

    Article  PubMed  Google Scholar 

  • Cid, N., N. Bonada, J. Heino, M. Cañedo-Argüelles, J. Crabot, R. Sarremejane, J. Soininen, R. Stubbington & T. Datry, 2020. A metacommunity approach to improve biological assessments in highly dynamic freshwater ecosystems. BioScience 70: 427–438.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cunillera-Montcusí, D., A. I. Borthagaray, D. Boix, S. Gascón, J. Sala, I. Tornero, X. D. Quintana & M. Arim, 2021. Metacommunity resilience against simulated gradients of wildfire: disturbance intensity and species dispersal ability determine landscape recover capacity. Ecography 44: 1022–1034.

    Article  Google Scholar 

  • Datry, T., S. T. Larned & K. Tockner, 2014. Intermittent rivers: a challenge for freshwater ecology. BioScience 64: 229–235.

    Article  Google Scholar 

  • Davis, C. A. & J. R. Bidwell, 2008. Response of aquatic invertebrates to vegetation management and agriculture. Wetlands 28: 793–805.

    Article  Google Scholar 

  • De Bie, T., L. De Meester, L. Brendonck, K. Martens, B. Goddeeris, D. Ercken, H. Hampel, L. Denys, L. Vanhecke, K. Van der Gucht, J. Van Wichelen, W. Vyverman & S. A. J. Declerck, 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters 15: 740–747.

    Article  PubMed  Google Scholar 

  • Deil, U., 2005. A review on habitats, plant traits and vegetation of ephemeral wetlands-a global perspective. Phytocoenologia 35: 533–705.

    Article  Google Scholar 

  • Díaz-Paniagua, C., R. Fernández-Zamudio, M. Florencio, P. García-Murillo, C. Gómez-Rodríguez, A. Portheault, L. Serrano & P. Siljeström, 2010. Temporay ponds from Doñana National Park: a system of natural habitats for the preservation of aquatic flora and fauna. Limnetica 29: 41–58.

    Article  Google Scholar 

  • Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, J. M. Melack & J. J. Middelburg, 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51: 2388–2397.

    Article  Google Scholar 

  • Economo, E. P. & T. H. Keitt, 2008. Species diversity in neutral metacommunities: a network approach. Ecology Letters 11: 52–62.

    PubMed  Google Scholar 

  • Economo, E. P. & T. H. Keitt, 2010. Network isolation and local diversity in neutral metacommunities. Oikos 119: 1355–1363.

    Article  Google Scholar 

  • ESRI Inc., 2020. ArcGIS Pro. , https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview.

  • Fernández-Zamudio, R., P. García-Murillo & C. Díaz-Paniagua, 2016. Aquatic plant distribution is driven by physical and chemical variables and hydroperiod in a mediterranean temporary pond network. Hydrobiologia 774: 123–135.

    Article  Google Scholar 

  • Gledhill, D. G., P. James & D. H. Davies, 2008. Pond density as a determinant of aquatic species richness in an urban landscape. Landscape Ecology 23: 1219–1230.

    Article  Google Scholar 

  • Grainger, T. N. & B. Gilbert, 2016. Dispersal and diversity in experimental metacommunities: linking theory and practice. Oikos 125: 1213–1223.

    Article  Google Scholar 

  • Haddad, N. M., L. A. Brudvig, J. Clobert, K. F. Davies, A. Gonzalez, R. D. Holt, T. E. Lovejoy, J. O. Sexton, M. P. Austin, C. D. Collins, W. M. Cook, E. I. Damschen, R. M. Ewers, B. L. Foster, C. N. Jenkins, A. J. King, W. F. Laurance, D. J. Levey, C. R. Margules, B. A. Melbourne, A. O. Nicholls, J. L. Orrock, D. X. Song & J. R. Townshend, 2015. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances 1: 1–10.

    Article  Google Scholar 

  • Halley, J. M. & Y. Iwasa, 2011. Neutral theory as a predictor of avifaunal extinctions after habitat loss. Proceedings of the National Academy of Sciences 108: 2316–2321.

    Article  CAS  Google Scholar 

  • Hanski, I., 1999. Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 87: 209.

    Article  Google Scholar 

  • Heino, J., J. Alahuhta, L. M. Bini, Y. Cai, A. S. Heiskanen, S. Hellsten, P. Kortelainen, N. Kotamäki, K. T. Tolonen, P. Vihervaara, A. Vilmi & D. G. Angeler, 2021. Lakes in the era of global change: moving beyond single-lake thinking in maintaining biodiversity and ecosystem services. Biological Reviews 96: 89–106.

    Article  PubMed  Google Scholar 

  • Hill, M. J., J. Heino, I. Thornhill, D. B. Ryves & P. J. Wood, 2017a. Effects of dispersal mode on the environmental and spatial correlates of nestedness and species turnover in pond communities. Oikos 126: 1575–1585.

    Article  Google Scholar 

  • Hill, M. J., R. G. Death, K. L. Mathers, D. B. Ryves, J. C. White & P. J. Wood, 2017b. Macroinvertebrate community composition and diversity in ephemeral and perennial ponds on unregulated floodplain meadows in the UK. Hydrobiologia Springer International Publishing 793: 95–108.

    CAS  Google Scholar 

  • Hill, M. J., H. M. Greaves, C. D. Sayer, C. Hassall, M. Milin, V. S. Milner, L. Marazzi, R. Hall, L. R. Harper, I. Thornhill, R. Walton, J. Biggs, N. Ewald, A. Law, N. Willby, J. C. White, R. A. Briers, K. L. Mathers, M. J. Jeffries, & P. J. Wood, 2021. Pond ecology and conservation: research priorities and knowledge gaps. Ecosystems.

  • Horváth, Z., R. Ptacnik, C. F. Vad & J. M. Chase, 2019. Habitat loss over six decades accelerates regional and local biodiversity loss via changing landscape connectance. Ecology Letters 22: 1019–1027.

    Article  PubMed  PubMed Central  Google Scholar 

  • IPCC, 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, papers2://publication/uuid/B8BF5043-C873-4AFD-97F9-A630782E590D.

  • Keitt, T. H., 1997. Stability and complexity on a lattice: Coexistence of species in an individual-based food web model. Ecological Modelling 102: 243–258.

    Article  Google Scholar 

  • Kelly-Quinn, M., J. Biggs & S. von Fumetti, 2017. Preface: The importance of small water bodies. Hydrobiologia Springer International Publishing 793: 1–2.

    Google Scholar 

  • Leibold, M. A. & J. M. Chase, 2018. Metacommunity Ecology, Princeton University Press:

    Book  Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, T. Law, D. Tilman & M. Loreau, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • Loreau, M., 2010. From Population to Ecosystems: Theoretical Foundations for a New Ecological Synthesis, Princeton University Press, Oxford and Princeton:

    Book  Google Scholar 

  • Matias, M. G., N. Mouquet & J. M. Chase, 2013. Dispersal stochasticity mediates species richness in source-sink metacommunities. Oikos 122: 395–402.

    Article  Google Scholar 

  • Miró, A., D. O’Brien, J. Tomàs, T. Buchaca, I. Sabás, V. Osorio, F. Lucati, Q. Pou-Rovira, & M. Ventura, 2020. Rapid amphibian community recovery following removal of non-native fish from high mountain lakes. Biological Conservation Elsevier 251: 108783, https://doi.org/10.1016/j.biocon.2020.108783.

  • Mouquet, N. & M. Loreau, 2002. Coexistence in metacommunities: the regional similarity hypothesis. The American Naturalist 159: 420–426.

    Article  PubMed  Google Scholar 

  • Munoz, F., M. Grenié, P. Denelle, A. Taudière, F. Laroche, C. Tucker & C. Violle, 2018. Ecolottery: simulating and assessing community assembly with environmental filtering and neutral dynamics in R. Methods in Ecology and Evolution 9: 693–703.

    Article  Google Scholar 

  • O’Neill, B. J., 2016. Community disassembly in ephemeral ecosystems. Ecology 97: 3285–3292.

    Article  PubMed  Google Scholar 

  • Pekel, J. F., A. Cottam, N. Gorelick & A. S. Belward, 2016. High-resolution mapping of global surface water and its long-term changes. Nature Nature Publishing Group 540: 418–422. https://doi.org/10.1038/nature20584.

    Article  CAS  Google Scholar 

  • Rodríguez-Tricot, L. & M. Arim, 2020. From Hutchinsonian ratios to spatial scaling theory: the interplay among limiting similarity, body size and landscape structure. Ecography 43: 318–327.

    Article  Google Scholar 

  • Rosset, V., A. Ruhi, M. T. Bogan & T. Datry, 2017. Do lentic and lotic communities respond similarly to drying? Ecosphere 8: e01809.

    Article  Google Scholar 

  • Santos, M., L. Cagnolo, T. Roslin, H. J. Marrero & D. P. Vázquez, 2019. Landscape connectivity explains interaction network patterns at multiple scales. Ecology 100: 1–8.

    Article  Google Scholar 

  • Seymour, M., E. A. Fronhofer & F. Altermatt, 2015. Dendritic network structure and dispersal affect temporal dynamics of diversity and species persistence. Oikos 124: 908–916.

    Article  Google Scholar 

  • Shin, H. R., & J. M. Kneitel, 2019. Warming interacts with inundation timing to influence the species composition of California vernal pool communities. Hydrobiologia Springer International Publishing 0123456789. https://doi.org/10.1007/s10750-019-04040-z.

  • Shipley, B., F. De Bello, J. H. C. Cornelissen, E. Laliberté, D. C. Laughlin & P. B. Reich, 2016. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia Springer, Berlin Heidelberg 180: 923–931.

    Article  Google Scholar 

  • Suzuki, Y. & E. P. Economo, 2021. From species sorting to mass effects: spatial network structure mediates the shift between metacommunity archetypes. Ecography 44: 715–726.

    Article  Google Scholar 

  • Tachet, H., 2000. Invertebrés d’eau douce, systematique, biologie, ecologie. CNR Editions, Paris, Paris.

  • Thompson, P. L., B. Rayfield & A. Gonzalez, 2017. Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography 40: 98–108.

    Article  Google Scholar 

  • Tittensor, D. P. & B. Worm, 2016. A neutral-metabolic theory of latitudinal biodiversity. Global Ecology Biogeography 25: 630–641.

    Article  Google Scholar 

  • Urban, D. L. & T. H. Keitt, 2001. Landscape connectivity: a graph-theoretic perspective. Ecology 85: 1205–1218.

    Article  Google Scholar 

  • Urban, M. C., G. Bocedi, A. P. Hendry, J.-B. Mihoub, G. Pe’er, A. Singer, J. R. Bridle, L. G. Crozier, L. De Meester, W. Godsoe, A. Gonzalez, J. J. Hellmann, R. D. Holt, A. Huth, K. Johst, C. B. Krug, P. W. Leadley, S. C. F. Palmer, J. H. Pantel, A. Schmitz, P. A. Zollner, & J. M. J. Travis, 2016. Improving the forecast for biodiversity under climate change. Science 353: aad8466.

  • Uroy, L., A. Alignier, C. Mony, J. C. Foltête & A. Ernoult, 2021. How to assess the temporal dynamics of landscape connectivity in ever-changing landscapes: a literature review. Landscape Ecology 36: 2487–2504.

    Article  Google Scholar 

  • Vellend, 2016. The Theory of Ecological Communities. Princeton University Press.

  • Wiggins, G. B. B., R. J. J. Mackay & I. M. M. Smith, 1980. Evolutionary and ecological strategies of animals in annual temporary pools. Archiv Für Hydrobiologie Supplement 58: 97–206.

    Google Scholar 

  • Williams, D. D., 2006. The Biology of temporary waters. Oxford University Press. http://cataleg.udg.edu/record=b1216539~S10*cat.

  • Williams, P., M. Whitfield, J. Biggs, S. Bray, G. Fox, P. Nicolet, & D. Sear, 2004. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biological Conservation 115: 329–341. http://linkinghub.elsevier.com/retrieve/pii/S0006320703001538.

  • Williams, P., J. Biggs, C. Stoate, J. Szczur, C. Brown, & S. Bonney, 2020. Nature based measures increase freshwater biodiversity in agricultural catchments. Biological Conservation 244: 108515. https://doi.org/10.1016/j.biocon.2020.108515.

  • Wood, P. J., M. T. Greenwood, & M. D. Agnew, 2003. Pond biodiversity and habitat loss in the UK. Area 35: 206–216. https://doi.org/10.1111/1475-4762.00249.

  • Worm, B. & D. P. Tittensor, 2018. A Theory of Global Biodiversity, Princeton University Press:

    Book  Google Scholar 

Download references

Acknowledgments

This study was part of the H2020 EU-funded project PONDERFUL (no. 869296). AIB was supported by CSIC I+D 2020 UDELAR and FCE_1_2021_1_167009. MA and AIB are grateful for the support provided by the CSIC groups (ID 657725) and acknowledge the support of Programa de Desarrollo de las Ciencias Básicas (PEDECIBA) and Agencia Nacional de Investigación e Innovación (ANII), Uruguay. DC-M was supported by the H2020 EU-funded projects AQUACOSM & AQUACOSM-plus (no. 731065 & 871081) and the MECODISPER project (CTM2017-89295-P) funded by the Spanish Ministerio de Economía, Industria y Competitividad (MINECO)—Agencia Estatal de Investigación (AEI) and co-funded by the European Regional Development Fund (ERDF). We specially thanks the thoughtful caveats from reviewers that helped to better frame our contribution, its extrapolation to alternative scenarios, as well as, its limits.

Funding

Funding was provided by Horizon 2020 Framework Programme (Grant Number 869296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Arim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Sidinei M. Thomaz

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Mary Kelly-Quinn, Jeremy Biggs, J. Iwan Jones & William D. Riley / Small Waterbodies in the Landscape

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 942 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borthagaray, A.I., Cunillera-Montcusí, D., Bou, J. et al. Pondscape or waterscape? The effect on the diversity of dispersal along different freshwater ecosystems. Hydrobiologia 850, 3211–3223 (2023). https://doi.org/10.1007/s10750-022-05123-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-05123-0

Keywords

Navigation