Skip to main content

Advertisement

Log in

Anthropogenic impacts on rivers: use of multiple indicators to assess environmental quality status

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The effects of urban growth are multidimensional and therefore they cannot be assessed using only one indicator. The objective of this study was to assess the environmental quality of urbanized rivers through the evaluation of multiple indicators, including water quality, habitat condition, macroinvertebrate assemblages, and anuran amphibians as bioindicators. Twelve sites along three rivers were characterized regarding water quality and habitat condition using a Habitat Model Affinity score, during high-flow and low-flow seasons between 2009 and 2013. Fourteen water quality parameters were assessed at each site. A general Water Quality Index was applied to the physical, chemical, and bacteriological data. Macroinvertebrate taxa richness, Plecoptera–Ephemeroptera–Trichoptera richness, and the Biotic Index of San Luis Sierras were the metrics used to analyze macroinvertebrate assemblage shifts. Species richness and relative abundance of amphibians were estimated from calling and visual encounter surveys, in parallel with all aforementioned parameters. Principal Component Analysis identified that macroinvertebrate-based metrics were superior in reflecting the water quality and habitat condition impairments, whereas amphibian metrics showed a differential sensitivity to specific water quality parameters such as nutrient enrichment. This study contributes to achieve a more comprehensive understanding of the complexity of the chemical and biological processes experienced by urban affected environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abbasi, T. & S. A. Abbasi, 2012. Water Quality Indices, Elsevier, Amsterdam

    Google Scholar 

  • Alba-Tercedor, J., 1996. Macroinvertebrados acuáticos y calidad de las aguas de los ríos. In IV Simposio del agua en Andalucía (SIAGA), Vol. 2. 203–213.

  • Almeida, C., S. O. González, M. Mallea & P. González, 2012. A recreational water quality index using chemical, physical and microbiological parameters. Environmental Science and Pollution Research 19: 3400–3411. https://doi.org/10.1007/s11356-012-0865-5.

    Article  Google Scholar 

  • Amaral, P. H. M. D., L. S. D. Silveira, B. F. J. V. Rosa, V. C. D. Oliveira & R. D. G. Alves, 2015. Influence of habitat and land use on the assemblages of Ephemeroptera, Plecoptera, and Trichoptera in neotropical streams. Journal of Insect Science 15: 60. https://doi.org/10.1093/jisesa/iev042.

    Article  Google Scholar 

  • American Public Health Association—APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington DC:

    Google Scholar 

  • Anderson, J. R., 1976. A Land Use and Land Cover Classification System for Use with Remote Sensor Data, US Government Printing Office, Washington DC:

    Book  Google Scholar 

  • Babini, M. S., C. L. Bionda, Z. A. Salinas, N. E. Salas & A. L. Martino, 2018. Reproductive endpoints of Rhinella arenarum (Anura, Bufonidae): populations that persist in agroecosystems and their use for the environmental health assessment. Ecotoxicology and Environmental Safety 154: 294–301. https://doi.org/10.1016/j.ecoenv.2018.02.050.

    Article  Google Scholar 

  • Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish: US Environmental Protection Agency, Office of Water Washington, DC. https://www.epa.gov/sites/production/files/2019-02/documents/rapid-bioassessment-streams-rivers-1999.pdf.

  • Blaustein, A. R., B. A. Han, R. A. Relyea, P. T. Johnson, J. C. Buck, S. S. Gervasi & L. B. Kats, 2011. The complexity of amphibian population declines: understanding the role of cofactors in driving amphibian losses. Annals of the New York Academy of Sciences 1223: 108–119. https://doi.org/10.1111/j.1749-6632.2010.05909.x.

    Article  Google Scholar 

  • Bonada, N., M. Rieradevall, N. Prat & V. H. Resh, 2006. Benthic macroinvertebrate assemblages and macrohabitat connectivity in Mediterranean-climate streams of northern California. Journal of the North American Benthological Society 25: 32–43. https://doi.org/10.1899/0887-3593(2006)25[32:BMAAMC]2.0.CO;2.

    Article  Google Scholar 

  • Booth, D. B., A. H. Roy, B. Smith & K. A. Capps, 2016. Global perspectives on the urban stream syndrome. Freshwater Science 35: 412–420. https://doi.org/10.1086/684940.

    Article  Google Scholar 

  • Bounas, A., M. Keroglidou, E. A. Toli, I. Chousidis, D. Tsaparis, I. Leonardos & K. Sotiropoulos, 2020. Constrained by aliens, shifting landscape, or poor water quality? Factors affecting the persistence of amphibians in an urban pond network. Aquatic Conservation: Marine and Freshwater Ecosystems 30: 1037–1049. https://doi.org/10.1002/aqc.3309.

    Article  Google Scholar 

  • Calderon, M. R., P. González, M. Moglia, S. O. González & M. B. Jofré, 2014. Use of multiple indicators to assess the environmental quality of urbanized aquatic environments in San Luis, Argentina. Environmental Monitoring and Assessment 186: 4411–4422. https://doi.org/10.1007/s10661-014-3707-8.

    Article  Google Scholar 

  • Calderon, M. R., M. M. Moglia, R. P. Nievas, P. L. Colombetti, S. P. González & M. B. Jofré, 2017. Assessment of the environmental quality of two urbanized lotic systems using multiple indicators. River Research and Applications 33: 1119–1129. https://doi.org/10.1002/rra.3160.

    Article  Google Scholar 

  • Calderon, M. R., C. A. Almeida, P. González & M. B. Jofré, 2019. Influence of water quality and habitat conditions on amphibian community metrics in rivers affected by urban activity. Urban Ecosystems 22: 743–755. https://doi.org/10.1007/s11252-019-00862-w.

    Article  Google Scholar 

  • Chadwick, M. A., D. R. Dobberfuhl, A. C. Benke, A. D. Huryn, K. Suberkropp & J. E. Thiele, 2006. Urbanization affects stream ecosystem function by altering hydrology, chemistry, and biotic richness. Ecological Applications 16: 17961807. https://doi.org/10.1890/1051-0761(2006)016[1796:UASEFB]2.0.CO;2.

    Article  Google Scholar 

  • Chambers, P., D. McGoldrick, R. Brua, C. Vis, J. Culp & G. Benoy, 2012. Development of environmental thresholds for nitrogen and phosphorus in Streams. Journal of Environmental Quality 41: 7–20. https://doi.org/10.2134/jeq2010.0273.

    Article  Google Scholar 

  • Clausen, J. C., K. Guillard, C. M. Sigmund & K. M. Dors, 2000. Water quality changes from riparian buffer restoration in Connecticut. Journal of Environmental Quality 29: 1751–1761. https://doi.org/10.2134/jeq2000.00472425002900060004x.

    Article  Google Scholar 

  • Cuffney, T., R. Brightbill, J. May & R. Waite, 2010. Responses of benthic macroinvertebrates to environmental changes associated with urbanization in nine metropolitan areas. Ecological Applications 20: 1384–1401. https://doi.org/10.1890/08-1311.1.

    Article  Google Scholar 

  • Cushman, S. A., 2006. Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biological Conservation 128: 231–240. https://doi.org/10.1016/j.biocon.2005.09.031.

    Article  Google Scholar 

  • Davies, P. J., I. A. Wright, S. J. Findlay, O. J. Jonasson & S. Burgin, 2010. Impact of urban development on aquatic macroinvertebrates in south eastern Australia: degradation of in-stream habitats and comparison with non-urban streams. Aquatic Ecology 44: 685–700. https://doi.org/10.1007/s10452-009-9307-y.

    Article  Google Scholar 

  • De Mendiburu, F., 2014. Agricolae: statistical procedures for agricultural research. R package version 1: 1–4.

  • Dewson, Z. S., A. B. James & R. G. Death, 2007. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. Journal of the North American Benthological Society 26: 401–415. https://doi.org/10.1899/06-110.1.

    Article  Google Scholar 

  • Dodd, C. K., 2010. Amphibian Ecology and Conservation: A Handbook of Techniques, Oxford University Press:

    Google Scholar 

  • Domínguez, E. & H. R. Fernández, 2009. Macroinvertebrados Bentónicos Sudamericanos. Sistemática y Biología, Fundación Miguel Lillo, Tucumán, Argentina:

    Google Scholar 

  • Dosskey, M. G., P. Vidon, N. P. Gurwick, C. J. Allan, T. P. Duval & R. Lowrance, 2010. The role of riparian vegetation in protecting and improving chemical water quality in streams. JAWRA Journal of the American Water Resources Association 46: 261–277. https://doi.org/10.1111/j.1752-1688.2010.00419.x.

    Article  Google Scholar 

  • Duffy, B. T., 2011. Relationship of substrate, silt and algal cover indices to stream nutrients. Dissertation, 35th Annual Meeting of the New England Association of Environmental Biologists.

  • Dunlop, J. E., N. Horrigan, G. McGregor, B. J. Kefford, S. Choy & R. Prasad, 2008. Effect of spatial variation on salinity tolerance of macroinvertebrates in Eastern Australia and implications for ecosystem protection trigger values. Environmental Pollution 151: 621–630. https://doi.org/10.1016/j.envpol.2007.03.020.

    Article  Google Scholar 

  • Edegbene, A. O., F. O. Arimoro & O. N. Odume, 2019. Developing and applying a macroinvertebrate-based multimetric index for urban rivers in the Niger Delta, Nigeria. Ecology and Evolution 9: 12869–12885. https://doi.org/10.1002/ece3.5769.

    Article  Google Scholar 

  • Fierro, P., C. Valdovinos, L. Vargas-Chacoff, C. Bertrán & I. Arismendi, 2017. Macroinvertebrates and fishes as bioindicators of stream water pollution. In Tutu, H. & B. P. Grover (eds), Water Quality InTech, Rijeka: 23–38.

    Google Scholar 

  • García-Ayllón, S., 2016. Rapid development as a factor of imbalance in urban growth of cities in Latin America: a perspective based on territorial indicators. Habitat International 58: 127–142. https://doi.org/10.1016/j.habitatint.2016.10.005.

    Article  Google Scholar 

  • Gómez-Mestre, I., M. Tejedo, E. Ramayo & J. Estepa, 2004. Developmental alterations and osmoregulatory physiology of a larval anuran under osmotic stress. Physiological and Biochemical Zoology 77: 267–274. https://doi.org/10.1086/378143.

    Article  Google Scholar 

  • González, S. O., C. A. Almeida, M. Calderon, M. A. Mallea & P. González, 2014. Assessment of the water self-purification capacity on a river affected by organic pollution: application of chemometrics in spatial and temporal variations. Environmental Science and Pollution Research 21: 10583–10593. https://doi.org/10.1007/s11356-014-3098-y.

    Article  Google Scholar 

  • Hamer, A. J. & M. J. McDonnell, 2008. Amphibian ecology and conservation in the urbanising world: a review. Biological Conservation 141: 2432–2449. https://doi.org/10.1016/j.biocon.2008.07.020.

    Article  Google Scholar 

  • Hamid, S. & C. S. Rawi, 2017. Application of aquatic insects (Ephemeroptera, Plecoptera and Trichoptera) in water quality assessment of Malaysian headwater. Tropical Life Sciences Research 28: 143–162. https://doi.org/10.21315/tlsr2017.28.2.11.

    Article  Google Scholar 

  • Harguinteguy, C. A., R. Schreiber & M. L. Pignata, 2013. Myriophyllum aquaticum as a biomonitor of water heavy metal input related to agricultural activities in the Xanaes River (Córdoba, Argentina). Ecological Indicators 27: 8–16. https://doi.org/10.1016/j.ecolind.2012.11.018.

    Article  Google Scholar 

  • Hart, B. T., P. Bailey, R. Edwards, K. Hortle, K. James, A. McMahon, C. Meredith & K. Swadling, 1991. A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia 210: 105–144. https://doi.org/10.1007/BF00014327.

    Article  Google Scholar 

  • Hazelton, P. 2003. Analysis of Ephemeroptera, Plecoptera and Trichoptera (EPT) richness and diversity of Guilford Creek, Guilford, NY. State University of New York at Oneonta. http://www.oneonta.edu/ACADEMICS/biofld/PUBS/ANNUAL/2003/(200)%20Plecoptera%20and%20trichoptera.pdf.

  • Heino, J. & J. Soininen, 2007. Are higher taxa adequate surrogates for species-level assemblage patterns and species richness in stream organisms? Biological Conservation 137: 78–89. https://doi.org/10.1016/j.biocon.2007.01.017.

    Article  Google Scholar 

  • Instituto Nacional de Estadística y Censos (INDEC), 2010. Censo Nacional de Población, Hogares y Viviendas 2010. Censo del Bicentenario. https://www.indec.gob.ar/ftp/cuadros/poblacion/censo2010_tomo1.pdf.

  • Ji, F., D. Han, L. Yan, S. Yan, J. Zha & J. Shen, 2022. Assessment of benthic invertebrate diversity and river ecological status along an urbanized gradient using environmental DNA metabarcoding and a traditional survey method. Science of the Total Environment 806: 150587. https://doi.org/10.1016/j.scitotenv.2021.150587.

    Article  Google Scholar 

  • Karr, J. R., K. D. Fausch, P. L. Angermeier, P. R. Yant & J. Schlosser, 1986. Assessing biological integrity in running waters: a method and its rationale. Special Publication 5. Illinois Natural History Survey. https://semspub.epa.gov/work/01/554353.pdf.

  • Kefford, B. J., P. J. Papas & D. Nugegoda, 2003. Relative salinity tolerance of macroinvertebrates from the Barwon River, Victoria, Australia. Marine and Freshwater Research 54: 755–765. https://doi.org/10.1071/MF02081.

    Article  Google Scholar 

  • Lafortezza, R. & G. Sanesi, 2019. Nature-based solutions: settling the issue of sustainable urbanization. Environmental Research 172: 394–398. https://doi.org/10.1016/j.envres.2018.12.063.

    Article  Google Scholar 

  • Laposata, M. M. & W. A. Dunson, 2000. Effects of spray-irrigated wastewater effluent on temporary pond-breeding amphibians. Ecotoxicology and Environmental Safety 46: 192–201. https://doi.org/10.1006/eesa.1999.1895.

    Article  Google Scholar 

  • Lê, S., J. Josse & F. Husson, 2008. FactoMineR: an R package for multivariate analysis. Journal of Statistical Software 25: 1–18.

    Article  Google Scholar 

  • Lenat, D. & D. Penrose, 1996. History of EPT taxa richness metric. Bulletin of the North American Benthological Society 13: 305–307.

    Google Scholar 

  • Lips, K. R., J. K. Reaser, B. E. Young & R. Ibanez, 2001. Amphibian monitoring in Latin America: a protocol manual (No. 30). Society for the Study of Amphibians and Reptiles.

  • Ludwig, J. A. & J. Reynolds, 1988. Statistical Ecology, Wiley, New York.

    Google Scholar 

  • Luo, K., X. Hu, Q. He, Z. Wu, H. Cheng, Z. Hu & A. Mazumder, 2018. Impacts of rapid urbanization on the water quality and macroinvertebrate communities of streams: a case study in Liangjiang New Area, China. Science of the Total Environment 621: 1601–1614. https://doi.org/10.1016/j.scitotenv.2017.10.068.

    Article  Google Scholar 

  • Madera, L. C., L. C. Angulo, L. C. Díaz & R. Rojano, 2016. Evaluación de la Calidad del Agua en algunos puntos afluentes del Río Cesar (Colombia) utilizando macroinvertebrados acuáticos como bioindicadores de contaminación. Información Tecnológica 27: 103–110. https://doi.org/10.4067/S0718-07642016000400011.

    Article  Google Scholar 

  • Mao, F., X. Zhao, P. Ma, S. Chi, K. Richards, J. Clark, D. Hannah & S. Krause, 2019. Developing composite indicators for ecological water quality assessment based on network interactions and expert judgment. Environmental Modelling & Software 115: 51–62. https://doi.org/10.1016/j.envsoft.2019.01.011.

    Article  Google Scholar 

  • Marshall, J. C., A. L. Steward & B. D. Harch, 2006. Taxonomic resolution and quantification of freshwater macroinvertebrate samples from an Australian dryland river: the benefits and costs of using species abundance data. Hydrobiologia 572: 171–194.

    Article  Google Scholar 

  • Martins, R. T., S. R. M. Couceiro, A. S. Melo, M. P. Moreira & N. Hamada, 2017. Effects of urbanization on stream benthic invertebrate communities in Central Amazon. Ecological Indicators 73: 480–491. https://doi.org/10.1016/j.ecolind.2016.10.013.

    Article  Google Scholar 

  • McKibbin, R., W. T. Dushenko & C. A. Bishop, 2008. The influence of water quality on the embryonic survivorship of the Oregon spotted frog (Rana pretiosa) in British Columbia, Canada. Science of the Total Environment 395: 28–40. https://doi.org/10.1016/j.scitotenv.2008.01.050.

    Article  Google Scholar 

  • Mekonen, S., I. Petros & M. Hailemariam, 2017. The role of nematodes in the processes of soil ecology and their use as bioindicators. Agricultural and Biology Journal of North America 8: 132–140. https://doi.org/10.5251/abjna.2017.8.4.132.140.

    Article  Google Scholar 

  • Merrit, R. W., K. W. Cummins & M. B. Berg, 2008. An Introduction to the Aquatic Insects of North America, 4th ed. Kendall Hunt, Dubuque.

    Google Scholar 

  • Millar, R. G., 2000. Influence of bank vegetation on alluvial channel patterns. Water Resources Research 36: 1109–1118. https://doi.org/10.1029/1999WR900346.

    Article  Google Scholar 

  • Mingo Magro, J., 1981. La Vigilancia de la Contaminación Fluvial, MOPU, Madrid:

    Google Scholar 

  • Miserendino, M. L., C. Brand & C. Y. Di Prinzio, 2008. Assessing urban impacts on water quality, benthic communities and fish in streams of the Andes Mountains, Patagonia (Argentina). Water, Air, and Soil Pollution 194: 91–110. https://doi.org/10.1007/s11270-008-9701-4.

    Article  Google Scholar 

  • Montenegro C., M. Strada, G. Parmuchi, J. Bono, M. Stamati, E. Manghi, M. Brouver, F. Bertolami & E. Wabo, 2007. Mapa forestal Provincia de San Luis, actualización año 2002. Unidad de Manejo del Sistema de Evaluación Forestal. Dirección de Bosques, Secretaría de Ambiente y Desarrollo Sustentable. https://www.argentina.gob.ar/ambiente/bosques/umsef.

  • Morello, J., S. Matteucci, A. Rodríguez & M. Silva, 2018. Ecorregiones y Complejos Ecosistémicos Argentinos, GEPAMA & Orientación Gráfica Editora, Buenos Aires:

    Google Scholar 

  • Munné, A. & N. Prat, 2009. Use of macroinvertebrate-based multimetric indices for water quality evaluation in Spanish Mediterranean rivers: an intercalibration approach with the IBMWP index. Hydrobiologia 628: 203. https://doi.org/10.1007/s10750-009-9757-1.

    Article  Google Scholar 

  • New York State Department of Environmental Conservation, 2019. Standard operating procedure: Biological monitoring of surface waters in New York State. New York State Department of Environmental Conservation, Division of Water. https://www.dec.ny.gov/docs/water_pdf/sop20819biomonitoring.pdf.

  • Nievas, R. P., M. R. Calderon & M. M. Moglia, 2019. Environmental factors affecting the success of exotic plant invasion in a wildland-urban ecotone in temperate South America. Neotropical Biology and Conservation 14: 257. https://doi.org/10.3897/neotropical.14.e37633.

    Article  Google Scholar 

  • Pandey, L. K., I. Lavoie, S. Morin, J. Park, J. Lyu, S. Choi, H. Lee & T. Han, 2018. River water quality assessment based on a multi-descriptor approach including chemistry, diatom assemblage structure, and non-taxonomical diatom metrics. Ecological Indicators 84: 140–151. https://doi.org/10.1016/j.ecolind.2017.07.043.

    Article  Google Scholar 

  • Parmar, T. K., D. Rawtani & Y. K. Agrawal, 2016. Bioindicators: the natural indicator of environmental pollution. Frontiers in Life Science 9: 110–118. https://doi.org/10.1080/21553769.2016.1162753.

    Article  Google Scholar 

  • Peña Zubiate, C. A., A. d’Hiriart, E. R. Aguirre, M. A. Demmi, S. M. García, A. A. Marchi & A. P. Pascuarelli, 2006. Carta de suelos de la República Argentina Hoja San Luis, Provincia de San Luis. Instituto Nacional de Tecnología Agropecuaria y Gobierno de la Provincia de San Luis, Argentina. https://inta.gob.ar/sites/default/files/script-tmp-carta_de_suelos_hoja_san_luis.pdf.

  • Pounds, J. A., M. R. Bustamante, L. A. Coloma, J. A. Consuegra, M. P. Fogden, P. N. Foster, E. La Marca, K. L. Masters, A. Merino-Viteri, R. Puschendorf, S. R. Ron, G. A. Sanchez-Azofeifa, C. J. Still & B. E. Young, 2006. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439: 161–167. https://doi.org/10.1038/nature04246.

    Article  Google Scholar 

  • Prat, N. & A. Munné, 2014. Biomonitoreo de la calidad del agua en los ríos ibéricos: lecciones aprendidas. Limnetica 33: 47–64. https://doi.org/10.23818/limn.33.05.

    Article  Google Scholar 

  • QGIS Development Team, 2020. QGIS geographic information system. QGIS Association. https://www.qgis.org.

  • R Core Team, 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/.

  • Rakshit, D., G. Sahu, A. K. Mohanty, K. K. Satpathy, M. P. Jonathan, K. Murugan & S. K. Sarkar, 2017. Bioindicator role of tintinnid (Protozoa: Ciliophora) for water quality monitoring in Kalpakkam, Tamil Nadu, south east coast of India. Marine Pollution Bulletin 114: 134–143. https://doi.org/10.1016/j.marpolbul.2016.08.058.

    Article  Google Scholar 

  • Ridley, S. P. D., G. T. Busteed, L. B. Kats, T. L. Vandergon, L. F. Lee, R. G. Dagit, J. L. Kerby, R. N. Fisher & R. M. Sauvajot, 2005. Effects of urbanization on the distribution and abundance of amphibians and invasive species in southern California streams. Conservation Biology 19: 1894–1907. https://doi.org/10.1111/j.1523-1739.2005.00295.x.

    Article  Google Scholar 

  • Rocha, L., C. Feijoó, C. Hegoburu, E. Navarro, A. Torremorell & H. R. Fernández, 2020. Use of ecosystem health indicators for assessing anthropogenic impacts on freshwaters in Argentina: a review. Environmental Monitoring and Assessment 192: 3–26. https://doi.org/10.1007/s10661-020-08559-w.

    Article  Google Scholar 

  • Rogers, C. E., D. J. Brabander, M. T. Barbour & H. F. Hemond, 2002. Use of physical, chemical, and biological indices to assess impacts of contaminants and physical habitat alteration in urban streams. Environmental Toxicology and Chemistry: an International Journal 21: 1156–1167. https://doi.org/10.1002/etc.5620210607.

    Article  Google Scholar 

  • Rollins-Smith, L. A., 2009. The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochimica Et Biophysica Acta Biomembranes 1788: 1593–1599. https://doi.org/10.1016/j.bbamem.2009.03.008.

    Article  Google Scholar 

  • Roy, A. H., A. D. Rosemond, M. J. Paul, D. S. Leigh & J. B. Wallace, 2003. Stream macroinvertebrate response to catchment urbanisation (Georgia, USA). Freshwater Biology 48: 329–346. https://doi.org/10.1046/j.1365-2427.2003.00979.x.

    Article  Google Scholar 

  • Shibata, T., H. M. Solo-Gabriele, L. E. Fleming & S. Elmir, 2004. Monitoring marine recreational water quality using multiple microbial indicators in an urban tropical environment. Water Research 38: 3119–3131. https://doi.org/10.1016/j.watres.2004.04.044.

    Article  Google Scholar 

  • Sowers, A. D., M. A. Mills & S. J. Klaine, 2009. The developmental effects of a municipal wastewater effluent on the northern leopard frog, Rana pipiens. Aquatic Toxicology 94: 145–152. https://doi.org/10.1016/j.aquatox.2009.06.013.

    Article  Google Scholar 

  • Sparling, D. W., 2010. Water-quality criteria for amphibians. Amphibian Ecology and Conservation: a Handbook of Techniques Part 2: 105–120.

    Google Scholar 

  • Stancheva, R. & R. G. Sheath, 2016. Benthic soft-bodied algae as bioindicators of stream water quality. Knowledge and Management of Aquatic Ecosystems 417: 15. https://doi.org/10.1051/kmae/2016002.

    Article  Google Scholar 

  • Strahler, A. N., 1954. Quantitative geomorphology of erosional landscapes. In 19th International Geological Congress, Vol. 13. 341–354.

  • Sterling, J. L., A. D. Rosemond & S. J. Wenger, 2016. Watershed urbanization affects macroinvertebrate community structure and reduces biomass through similar pathways in Piedmont streams, Georgia, USA. Freshwater Science 35: 676–688. https://doi.org/10.1086/686614.

    Article  Google Scholar 

  • Szczepocka, E., B. Szulc, K. Szulc, B. Rakowska & J. Żelazna-Wieczorek, 2014. Diatom indices in the biological assessment of the water quality based on the example of a small lowland river. Oceanological and Hydrobiological Studies 43: 265–273. https://doi.org/10.2478/s13545-014-0141-z.

    Article  Google Scholar 

  • Tabacchi, E., L. Lambs, H. Guilloy, A. M. Planty-Tabacchi, E. Muller & H. Decamps, 2000. Impacts of riparian vegetation on hydrological processes. Hydrological Processes 14: 2959–2976. https://doi.org/10.1002/1099-1085(200011/12)14:16/17%3c2959::AID-HYP129%3e3.0.CO;2-B.

    Article  Google Scholar 

  • Tran, C. P., R. W. Bode, A. J. Smith & G. S. Kleppel, 2010. Land-use proximity as a basis for assessing stream water quality in New York State (USA). Ecological Indicators 10: 727–733. https://doi.org/10.1016/j.ecolind.2009.12.002.

    Article  Google Scholar 

  • Ultsch, G. R., D. F. Bradford & J. Freda, 1999. Physiology: coping with the environment. In McDiarmid, R. W. & R. Altig (eds), Tadpoles: The Biology of Anuran Larvae University of Chicago Press, Chicago: 189–214.

    Google Scholar 

  • Vallania, E. A., P. A. Garelis, E. S. Trípole & M. A. Gil, 1996. Un índice biótico para las Sierras de San Luis (Argentina). Rev UNRC 16: 129–136.

    Google Scholar 

  • Violin, C. R., P. Cada, E. B. Sudduth, B. A. Hassett, D. L. Penrose & E. S. Bernhardt, 2011. Effects of urbanization and urban stream restoration on the physical and biological structure of stream ecosystems. Ecological Applications 21: 1932–1949. https://doi.org/10.1890/10-1551.1.

    Article  Google Scholar 

  • Walker, T., P. Crittenden, V. Dauvalter, V. Jones, P. Kuhry, O. Loskutova, K. Mikkola, A. Nikula, E. Patova, V. Ponomarev, T. Pystina, O. Ratti, N. Solovieva, A. Stenina, T. Virtanen & D. Scott, 2009. Multiple indicators of human impacts on the environment in the Pechora Basin, north-eastern European Russia. Ecological Indicators 9: 765–779. https://doi.org/10.1016/j.ecolind.2008.09.008.

    Article  Google Scholar 

  • Wake, D. B. & V. T. Vredenburg, 2008. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences 105: 11466–11473. https://doi.org/10.1073/pnas.0801921105.

    Article  Google Scholar 

  • Walsh, C. J., A. H. Roy, J. W. Feminella, P. D. Cottingham, P. M. Groffman & R. P. Morgan, 2005. The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Benthological Society 24: 706–723. https://doi.org/10.1899/04-028.1.

    Article  Google Scholar 

  • Wang, L. & P. Kanehl, 2003. Influences of watershed urbanization and instream habitat on macroinvertebrates in cold water streams. Journal of the American Water Resources Association 39: 1181–1196. https://doi.org/10.1111/j.1752-1688.2003.tb03701.x.

    Article  Google Scholar 

  • Wang, B., D. Liu, S. Liu, Y. Zhang, D. Lu & L. Wang, 2012. Impacts of urbanization on stream habitats and macroinvertebrate communities in the tributaries of Qiangtang River, China. Hydrobiologia 680: 39–51. https://doi.org/10.1007/s10750-011-0899-6.

    Article  Google Scholar 

  • Wang, L., H. Li, J. Dang, Y. Zhao, Y. E. Zhu & P. Qiao, 2020. Effects of urbanization on water quality and the macrobenthos community structure in the Fenhe River, Shanxi Province, China. Journal of Chemistry. https://doi.org/10.1155/2020/8653486.

    Article  Google Scholar 

  • Weijters, M. J., J. H. Janse, R. Alkemade & J. T. A. Verhoeven, 2009. Quantifying the effect of catchment land use and water nutrient concentrations on freshwater river and stream biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 104–112. https://doi.org/10.1002/aqc.989.

    Article  Google Scholar 

  • Weir, L. A. & M. J. Mossman, 2005. North American Amphibian Monitoring Program (NAAMP). In Lannoo, M. J. (ed), Amphibian Declines: Conservation Status of United States Species University of California Press, Berkeley, California: 307–313.

    Chapter  Google Scholar 

  • White, J. Y. 2017. The effects of urban land use, riparian forest cover, and instream habitat complexity on macroinvertebrate assemblages. Dissertation, University of Melbourne.

  • Wickham, H., W. Chang & M. H. Wickham, 2016. Package ‘ggplot2’. Create elegant data visualisations using the grammar of graphics. Version 2: 1–189.

    Google Scholar 

  • Wilson, H. L., M. F. Johnson, P. J. Wood, C. R. Thorne & M. P. Eichhorn, 2021. Anthropogenic litter is a novel habitat for aquatic macroinvertebrates in urban rivers. Freshwater Biology 66: 524–534. https://doi.org/10.1111/fwb.13657.

    Article  Google Scholar 

  • Woodiwiss, F., 1964. The biological system of stream classification used by the Trent River Board. Chemistry & Industry 11: 443–447.

    Google Scholar 

  • Zampella, R. A., J. F. Bunnell, K. J. Laidig & N. A. Procopio, 2006. Using multiple indicators to evaluate the ecological integrity of a coastal plain stream system. Ecological Indicators 6: 644–663. https://doi.org/10.1016/j.ecolind.2005.08.027.

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge Instituto de Química de San Luis “Dr. Roberto Olsina”- Consejo Nacional de Investigaciones Científicas y Tecnológicas (INQUISAL-CONICET) and Universidad Nacional de San Luis (Project PROICO 2-2418) for financial support. We thank MSc. Angela Stires for the valuable language and grammar revision of the manuscript. Finally, we would like to thank two anonymous reviewers for their comments that helped to improve the quality of this manuscript.

Funding

This work was supported by Universidad Nacional de San Luis through a Grant Project PROICO 02-2418 and a Postdoctoral Grant for Dr. Mirian Calderon (RESOL-2020-134-APN-DIR#CONICET) from the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design of the results provided in this manuscript. Material preparation, data collection, and analysis were performed by MRC, SPG, JMPI, and MBJ. The first draft of the manuscript was written by MRC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mirian Roxana Calderon.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Research involving human and animal participants

Not applicable.

Additional information

Handling Editor: Marcelo S. Moretti

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calderon, M.R., González, S.P., Pérez-Iglesias, J.M. et al. Anthropogenic impacts on rivers: use of multiple indicators to assess environmental quality status. Hydrobiologia 850, 469–487 (2023). https://doi.org/10.1007/s10750-022-05090-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-05090-6

Keywords

Navigation