Skip to main content
Log in

Assessment of the water self-purification capacity on a river affected by organic pollution: application of chemometrics in spatial and temporal variations

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Water pollution caused by organic matter is a major global problem which requires continuous evaluation. Multivariate statistical analysis was applied to assess spatial and temporal changes caused by natural and anthropogenic phenomena along Potrero de los Funes River. Cluster analysis (CA), principal component analysis (PCA) and analysis of variance (ANOVA) were applied to a data set collected throughout a period of 3 years (2010–2012), which monitored 22 physical, chemical and biological parameters. Content of dissolved oxygen in water and biochemical oxygen demand in a watercourse are indicators of pollution caused by organic matter. For this reason, the Streeter-Phelps model was used to evaluate the water self-purification capacity. Hierarchical cluster analysis grouped the sampling sites based on the similarity of water quality characteristics. PCA resulted in two latent factors explaining 75.2 and 17.6 % of the total variance in water quality data sets. Multidimensional ANOVA suggested that organic pollution is mainly due to domestic wastewater run-offs and anthropogenic influence as a consequence of increasing urbanization and tourist influx over the last years. Besides, Streeter-Phelps parameters showed a low reaeration capacity before dam with low concentration of dissolved oxygen. Furthermore, self-purification capacity loss was correlated with the decrease of the Benthic Index. This measurement suggested that biological samplings complement the physical-chemical analysis of water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams SM, Greeley MS (2000) Ecotoxicological indicators of water quality: using multi-response indicators to assess the health of aquatic ecosystems. Water Air Soil Pollut 123(1–4):103–115

    Article  CAS  Google Scholar 

  • Alberto WD, María del Pilar D, María Valeria A, Fabiana PS, Cecilia HA, María de los Ángeles B (2001) Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquía River Basin (Córdoba–Argentina). Water Res 35(12):2881–2894

    Article  CAS  Google Scholar 

  • Almeida CA, Quintar S, González P, Mallea MA (2007) Influence of urbanization and tourist activities on the water quality of the Potrero de los Funes River (San Luis–Argentina). Environ Monit Assess 133(1–3):459–465

    Article  CAS  Google Scholar 

  • Almeida C, Quintar S, González P, Mallea M (2008) Assessment of irrigation water quality. A proposal of a quality profile. Environ Monit Assess 142(1–3):149–152

    Article  CAS  Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  • Asano TM, Eddy ATC (2007) Water reuse: issues, technologies, and applications. McGraw-Hill, New York

    Google Scholar 

  • Astel A, Biziuk M, Przyjazny A, Namieśnik J (2006) Chemometrics in monitoring spatial and temporal variations in drinking water quality. Water Res 40(8):1706–1716

    Article  CAS  Google Scholar 

  • Ayoko GA, Singh K, Balerea S, Kokot S (2007) Exploratory multivariate modeling and prediction of the physico-chemical properties of surface water and groundwater. J Hydrol 336(1–2):115–124

    Article  Google Scholar 

  • Babu MT, Kesava Das V, Vethamony P (2006) BOD-DO modeling and water quality analysis of a waste water outfall off Kochi, west coast of India. Environ Int 32(2):165–173

    Article  CAS  Google Scholar 

  • Baginska B, Pritchard T, Krogh M (2003) Roles of land use resolution and unit-area load rates in assessment of diffuse nutrient emissions. J Environ Manag 69(1):39–46

    Article  Google Scholar 

  • Bagur MG, Morales S, López-Chicano M (2009) Evaluation of the environmental contamination at an abandoned mining site using multivariate statistical techniques—the Rodalquilar (Southern Spain) mining district. Talanta 80(1):377–384

    Article  CAS  Google Scholar 

  • Basant N, Gupta S, Malik A, Singh KP (2010) Linear and nonlinear modeling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water—a case study. Chemom Intell Lab Syst 104(2):172–180

    Article  CAS  Google Scholar 

  • Bengraïne K, Marhaba TF (2003) Using principal component analysis to monitor spatial and temporal changes in water quality. J Hazard Mater 100(1–3):179–195

    Article  Google Scholar 

  • Boano F, Revelli R, Ridolfi L (2006) Stochastic modelling of DO and BOD components in a stream with random inputs. Adv Water Resour 29(9):1341–1350

    Article  Google Scholar 

  • Boyacıoğlu H, Gündogdu V, Boyacıoğlu H (2013) Investigation of priorities in water quality management based on correlations and variations. Mar Pollut Bull 69(1–2):48–54. doi:10.1016/j.marpolbul.2013.01.010

    Google Scholar 

  • Brown SD, Sum ST, Despagne F, Lavine BK (1996) Chemometrics. Anal Chem 68(12):21R–61R

    Article  Google Scholar 

  • Burger J (2006) Bioindicators: types, development, and use in ecological assessment and research. Environ Bioindic 1(1):22–39

    Article  Google Scholar 

  • Carignan V, Villard MA (2002) Selecting indicator species to monitor ecological integrity: a review. Environ Monit Assess 78(1):45–61

    Article  Google Scholar 

  • Cid FD, Antón RI, Pardo R, Vega M, Caviedes-Vidal E (2011) Modelling spatial and temporal variations in the water quality of an artificial water reservoir in the semiarid Midwest of Argentina. Anal Chim Acta 705(1–2):243–252

    Article  CAS  Google Scholar 

  • Cox BA (2003) A review of currently available in-stream water-quality models and their applicability for simulating dissolved oxygen in lowland rivers. Sci Total Environ 314–316:335–377

    Article  Google Scholar 

  • Da Silva AMM, Sacomani LB (2001) Using chemical and physical parameters to define the quality of Pardo River water (Botucatu-SP-Brazil). Water Res 35(6):1609–1616

    Article  Google Scholar 

  • Demars BOL, Manson JR (2013) Temperature dependence of stream aeration coefficients and the effect of water turbulence: a critical review. Water Res 47(1):1–15. doi:10.1016/j.watres.2012.09.054

    Article  CAS  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2011) InfoStat. versión 24-03-2011 edn. Universidad Nacional de Córdoba, Córdoba, Argentina

  • Fan C, Wang W-S (2006) Application of Streeter-and-Phelps equation to the aquatic environment management—a case study based on water quality monitoring data of Keelung River, Taiwan. In: Taiwan, 5th International Conference on Environmental Informatics, Bowling Green, Kentucky, USA, Aug 2006. pp 1-3

  • Fan X, Cui B, Zhao H, Zhang Z, Zhang H (2010) Assessment of river water quality in Pearl River Delta using multivariate statistical techniques. Procedia Environ Sci 2:1220–1234. doi:10.1016/j.proenv.2010.10.133

    Article  Google Scholar 

  • Gatica EA, Almeida CA, Mallea MA, Del Corigliano MC, González P (2012) Water quality assessment, by statistical analysis, on rural and urban areas of Chocancharava River (Río Cuarto), Córdoba, Argentina. Environ Monit Assess 184(12):7257–7274

    Article  Google Scholar 

  • Helena B, Pardo R, Vega M, Barrado E, Fernandez JM, Fernandez L (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res 34(3):807–816

    Article  CAS  Google Scholar 

  • Huisman JL, Weber N, Gujer W (2004) Reaeration in sewers. Water Res 38(5):1089–1100. doi:10.1016/j.watres.2003.11.025

    Article  CAS  Google Scholar 

  • Kaufman L, Rousseeuw PJ (2009) Finding groups in data: an introduction to cluster analysis, vol 344. Wiley.com

  • Kazi TG, Arain MB, Jamali MK, Jalbani N, Afridi HI, Sarfraz RA, Baig JA, Shah AQ (2009) Assessment of water quality of polluted lake using multivariate statistical techniques: a case study. Ecotoxicol Environ Saf 72(2):301–309. doi:10.1016/j.ecoenv.2008.02.024

    Article  CAS  Google Scholar 

  • Kowalkowski T, Zbytniewski R, Szpejna J, Buszewski B (2006) Application of chemometrics in river water classification. Water Res 40(4):744–752

    Article  CAS  Google Scholar 

  • Kraft J, Kowalik C, Einax J (2003) Statistical evaluation of river pollution data examplified by the Elbe river system. In: Chemometrics. Methods and applications. II Conference. Zakopane, Poland, pp 16-19

  • Miller JN (1991) Basic statistical methods for analytical chemistry. Part 2. Calibration and regression methods. A review. Analyst 116(1):3–14

    Article  CAS  Google Scholar 

  • Nazari Alavi A, Mirzai M, Sajadi SAA, Alamolhoda AA (2007) Surveying the Jagrood river’s self-purification. Environ Inform Arch 5:605–611

    Google Scholar 

  • Noori R, Sabahi MS, Karbassi AR, Baghvand A, Taati Zadeh H (2010) Multivariate statistical analysis of surface water quality based on correlations and variations in the data set. Desalination 260(1–3):129–136. doi:10.1016/j.desal.2010.04.053

    Article  CAS  Google Scholar 

  • Ostroumov SA (2005) On some issues of maintaining water quality and self-purification. Water Resour 32(3):305–313

    Article  CAS  Google Scholar 

  • Park SS, Lee YS (2002) A water quality modeling study of the Nakdong River, Korea. Ecol Model 152(1):65–75. doi:10.1016/S0304-3800(01)00489-6

    Article  CAS  Google Scholar 

  • Pejman AH, Nabi Bidhendi GR, Karbassi AR, Mehrdadi N, Esmaeili Bidhendi M (2009) Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques. Int J Environ Sci Technol 6(3):467–476

    Article  CAS  Google Scholar 

  • Pinto U, Maheshwari BL (2011) River health assessment in peri-urban landscapes: an application of multivariate analysis to identify the key variables. Water Res 45(13):3915–3924

    Article  CAS  Google Scholar 

  • Plummer JD, Long SC (2007) Monitoring source water for microbial contamination: evaluation of water quality measures. Water Res 41(16):3716–3728

    Article  CAS  Google Scholar 

  • Schnoor JL (1996) Environmental modeling, fate and transport of pollutants in water, air, and soil, environmental science and technology. Wiley-Interscience Publication, New York

    Google Scholar 

  • Shrestha S, Kazama F (2007) Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environ Model Softw 22(4):464–475

    Article  Google Scholar 

  • Simeonov V, Simeonova P, Tsitouridou R (2004) Chemometric quality assessment of surface waters: two case studies. Chem Eng Ecol 11(6):449–469

    CAS  Google Scholar 

  • Singh KP, Malik A, Mohan D, Sinha S (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Res 38(18):3980–3992. doi:10.1016/j.watres.2004.06.011

    Article  CAS  Google Scholar 

  • Smeti EM, Thanasoulias NC, Lytras ES, Tzoumerkas PC, Golfinopoulos SK (2009) Treated water quality assurance and description of distribution networks by multivariate chemometrics. Water Res 43(18):4676–4684

    Article  CAS  Google Scholar 

  • Streeter HW, Phelps EB (1958) A study of the pollution and natural purification of the Ohio River. US Department of Health, Education, & Welfare

  • Stribling JB (1998) Development of a benthic index of biotic integrity for Maryland streams. Maryland Department of Natural Resources, Monitoring and Non-Tidal Assessment Division

  • Vagnetti R, Miana P, Fabris M, Pavoni B (2003) Self-purification ability of a resurgence stream. Chemosphere 52(10):1781–1795

    Article  CAS  Google Scholar 

  • Varol M, Gökot B, Bekleyen A, Şen B (2012) Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. Catena 92:11–21. doi:10.1016/j.catena.2011.11.013

    Article  CAS  Google Scholar 

  • Wallace JB, Grubaugh JW, Whiles MR (1996) Biotic indices and stream ecosystem processes: results from an experimental study. Ecol Appl 6:140–151

    Article  Google Scholar 

  • Wei G, Yang Z, Cui B, Li B, Chen H, Bai J, Dong S (2009) Impact of dam construction on water quality and water self-purification capacity of the Lancang River, China. Water Resour Manag 23(9):1763–1780

    Article  Google Scholar 

  • Zhou F, Liu Y, Guo H (2007) Application of multivariate statistical methods to water quality assessment of the watercourses in Northwestern New Territories, Hong Kong. Environ Monit Assess 132(1–3):1–13

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Instituto de Química de San Luis, Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas (CCT-San Luis) and Agencia Nacional de Promoción Científica (FONCYT) for financial support. This paper is based on research completed as partial fulfilment for the PhD requirements at the Universidad Nacional de San Luis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Almeida.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, S.O., Almeida, C.A., Calderón, M. et al. Assessment of the water self-purification capacity on a river affected by organic pollution: application of chemometrics in spatial and temporal variations. Environ Sci Pollut Res 21, 10583–10593 (2014). https://doi.org/10.1007/s11356-014-3098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3098-y

Keywords

Navigation