Skip to main content

Advertisement

Log in

The role of floating and submerged macrophytes in the phytoplankton taxonomic and functional diversity in two tropical reservoirs

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Macrophytes play an important role in maintaining biodiversity. However, little is known about the relationships between different types of macrophytes and the diversity of aquatic communities. The purpose of this study was to determine the relationships between floating and submerged macrophytes and the temporal variation in the taxonomic and functional diversity of phytoplankton in two tropical reservoirs (Cursaí and Cajueiro) located in Northeastern Brazil. A field study was carried out quarterly between November 2018 and November 2019 to analyze the taxonomic (richness, equitability, and Shannon index) and functional (FRic, FEve, and FDiv) diversity indices of phytoplankton in relation to the presence of macrophytes. Taxonomic and functional diversity indices varied over time in sampling sites. Macrophytes had positive effects on taxonomic richness, Shannon index, and FDiv in Cajueiro, and negative effects on the taxonomic equitability and FEve of phytoplankton in Cursaí. Functional diversity of phytoplankton was negatively influenced by water transparency and positively by total dissolved solids, pH, and nitrate in sites with macrophytes, while taxonomic richness was positively influenced by total phosphorus. Our results showed that taxonomic and functional diversity of phytoplankton responded differently to spatial and temporal variation, and species richness, Shannon index and FDiv were related to macrophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Azevedo, A. D. S., A. N. Moura, N. K. C. Aragão-Tavares & Ê. W. Dantas, 2020. Taxonomic and functional approaches to phytoplankton in ecosystems with different coverage of aquatic plants. Brazilian Journal of Botany 43: 665–675.

    Article  Google Scholar 

  • Alvares, C. A., J. L. Stape, P. C. Sentelhas, J. L. de Moraes Gonçalves & G. Sparovek, 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711–728.

    Article  Google Scholar 

  • Amorim, C. A. & A. N. Moura, 2021. Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure, and ecosystem functioning. Science of the Total Environment 758: 143605.

    Article  Google Scholar 

  • Amorim, C. A., Ê. W. Dantas & A. N. Moura, 2020. Modeling cyanobacterial blooms in tropical reservoirs: The role of physicochemical variables and trophic interactions. Science of the Total Environment 744: 140659.

    Article  Google Scholar 

  • Anthony, J. L. & W. M. Lewis, 2012. Low boundary layer response and temperature dependence of nitrogen and phosphorus releases from oxic sediments of an oligotrophic lake. Aquatic Sciences 74: 611–617.

    Article  Google Scholar 

  • APAC, 2019. Agência Pernambucana de Águas e Clima. http://www.apac.pe.gov.br/meteorologia/monitoramento-pluvio.php (accessed 19 March 2019).

  • APAC, 2020. Agência Pernambucana de Águas e Clima. http://www.apac.pe.gov.br/meteorologia/monitoramento-pluvio.php (accessed 26 June 2020).

  • A.P.H.A., 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington:

    Google Scholar 

  • Barrow, J. L., B. E. Beisner, R. Giles, A. Giani, I. Domaizon & I. Gregory-Eaves, 2019. Macrophytes moderate the taxonomic and functional composition of phytoplankton assemblages during a nutrient loading experiment. Freshwater Biology 64: 1369–1381.

    Article  Google Scholar 

  • Bind, A., A. Kushwaha, G. Devi, S. Goswami, B. Sen & V. Prakash, 2019. Biosorption valorization of floating and submerged macrophytes for heavy-metal removal in a multi-component system. Applied Water Science 9: 1–9.

    Article  Google Scholar 

  • Brasil, J., J. L. Attayde, F. R. Vasconcelos, D. D. F. Dantas & V. L. M. Huszar, 2016. Drought-induced water-level reduction favors cyanobacteria blooms in tropical shallow lakes. Hydrobiologia 770: 145–164.

    Article  Google Scholar 

  • Burson, A., M. Stomp, E. Greenwell, J. Grosse & J. Huisman, 2018. Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community. Ecology 99: 1108–1118.

    Article  Google Scholar 

  • Cardoso, S. J., J. C. Nabout, V. F. Farjalla, P. M. Lopes, R. L. Bozelli, V. L. Huszar & F. Roland, 2017. Environmental factors driving phytoplankton taxonomic and functional diversity in Amazonian floodplain lakes. Hydrobiologia 802: 115–130.

    Article  Google Scholar 

  • Cunha, D. G. F., F. Bottino & M. C. Calijuri, 2012. Can free-floating and emerged macrophytes influence the density and diversity of phytoplankton in subtropical reservoirs? Lake and Reservoir Management 28: 255–264.

    Article  Google Scholar 

  • Cunha, D. G. F., M. C. Calijuri & M. C. Lamparelli, 2013. A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecological Engineering 60: 126–134.

    Article  Google Scholar 

  • Declerck, S., J. Vandekerkhove, L. Johansson, K. Muylaert, J. M. Conde-Porcuna, K. Van Der Gucht, C. Pérez-Martínez, T. Lauridsen, K. Schwenk, G. Zwart, W. Rommens, J. López-Ramos, E. Jeppesen, W. Vyverman, L. Brendonck & L. De Meester, 2005. Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 86: 1905–1915.

    Article  Google Scholar 

  • Declerck, S., M. Vanderstukken, A. Pals, K. Muylaert & L. De Meester, 2007. Plankton biodiversity along a gradient of productivity and its mediation by macrophytes. Ecology 88: 2199–2210.

    Article  Google Scholar 

  • Dias, R. M., J. C. B. da Silva, L. C. Gomes & A. A. Agostinho, 2017. Effects of macrophyte complexity and hydrometric level on fish assemblages in a Neotropical floodplain. Environmental Biology of Fishes 100: 703–716.

    Article  Google Scholar 

  • Ebeling, A., S. Pompe, J. Baade, N. Eisenhauer, H. Hillebrand, R. Proulx, C. Roscher, B. Schmid, C. Wirth & W. W. Weisser, 2014. A trait-based experimental approach to understand the mechanisms underlying biodiversity–ecosystem functioning relationships. Basic and Applied Ecology 15: 229–240.

    Article  Google Scholar 

  • Edwards, K. F., M. K. Thomas, C. A. Klausmeier & E. Litchman, 2016. Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level. Limnology and Oceanography 61: 1232–1244.

    Article  Google Scholar 

  • Esteves, F. A., 2011. Fundamentos de Limnologia, 3rd ed. Interciência, Rio de Janeiro:

    Google Scholar 

  • Ferreira, T. F., L. O. Crossetti, D. M. M. Marques, L. Cardoso, C. R. Fragoso Jr. & E. H. van Nes, 2018. The structuring role of submerged macrophytes in a large subtropical shallow lake: clear effects on water chemistry and phytoplankton structure community along a vegetated-pelagic gradient. Limnologica 69: 142–154.

    Article  Google Scholar 

  • Figueredo, C. C. & A. Giani, 2001. Seasonal variation in the diversity and species richness of phytoplankton in a tropical eutrophic reservoir. Hydrobiologia 445: 165–174.

    Article  Google Scholar 

  • Gaston, K. J., 2000. Global patterns in biodiversity. Nature 405: 220–227.

    Article  Google Scholar 

  • Gebrehiwot, M., D. Kifle, I. Stiers & L. Triest, 2017. Phytoplankton functional dynamics in a shallow polymictic tropical lake: the influence of emergent macrophytes. Hydrobiologia 797: 69–86.

    Article  Google Scholar 

  • Ghosh, S., S. Barinova & J. P. Keshri, 2012. Diversity and seasonal variation of phytoplankton community in the Santragachi Lake, West Bengal, India. Qscience Connect 2012: 3.

    Article  Google Scholar 

  • Golterman, H., R. Clymo & M. Ohnstad, 1978. Method for the Physical and Chemical Analysis of Fresh Waters, IBP Handbook, London:

    Google Scholar 

  • He, Y., N. Song & H. L. Jiang, 2018. Effects of dissolved organic matter leaching from macrophyte litter on black water events in shallow lakes. Environmental Science and Pollution Research 25: 9928–9939.

    Article  Google Scholar 

  • Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Inaotombi, S. & D. Sarma, 2021. Factors influencing distribution patterns of cyanobacteria in an upland lake of the Kumaun Himalayas, India. Archives of Environmental & Occupational Health 76: 123–133.

    Article  Google Scholar 

  • INMET, 2019. Instituto Nacional de Meteorologia. http://www.inmet.gov.br/portal/ (accessed 19 March 2019).

  • Jeppesen, E., M. Søndergaard, N. Mazzeo, M. Meerhoff, C. C. Branco, V. Huszar & F. Scasso, 2005. Lake restoration and biomanipulation in temperate lakes: relevance for subtropical and tropical lakes. Restoration and Management of Tropical Eutrophic Lakes 61: 341–359.

    Google Scholar 

  • Jeppesen, E., M. Søndergaard & Z. Liu, 2017. Lake restoration and management in a climate change perspective: an introduction. Water 9: 1–8.

    Article  Google Scholar 

  • Jiang, X., X. Jin, Y. Yao, L. Li & F. Wu, 2008. Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China. Water Research 42: 2251–2259.

    Article  Google Scholar 

  • John, D. M., B. A. Whitton & A. J. Brook, 2002. The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae, Cambridge University Press, Cambridge:

    Google Scholar 

  • Komárek, J. & K. Anagnostidis, 1999. Cyanoprokaryota I. Teil Chroococcales. In Ettl, H., G. Gärtner, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa. Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Komárek, J. & K. Anagnostidis, 2005. Cyanoprokaryota 2. Teil Oscillatoriales. In Büdel, B., L. Krienitz, G. Gärtner & M. Schagerl (eds), Süsswasserflora von Mitteleuropa. Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Komárek, J. & G. Cronberg, 2001. Some chroococcalean and oscillatorialean Cyanoprokaryotes from southern African lakes, ponds and pools. Nova Hedwigia 73: 129–160.

    Article  Google Scholar 

  • Koroleff, F., 1976. Determination of nutrients. In Grasshoff, K. (ed), Methods of Seawater Analysis Verlag Chemie, Stuttgart: 117–181.

    Google Scholar 

  • Kowalczewska-Madura, K., R. Gołdyn & M. Dera, 2015. Spatial and seasonal changes of phosphorus internal loading in two lakes with different trophy. Ecological Engineering 74: 187–195.

    Article  Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991. Bacillariophyceae 3. Teil: Centrales, Fragilariaceae and Eunotiaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Sübwasser flora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Kruk, C., M. Devercelli & V. L. Huszar, 2020. Reynolds functional groups: a trait-based pathway from patterns to predictions. Hydrobiologia 848: 113–129.

    Article  Google Scholar 

  • Krztoń, W., J. Kosiba, A. Pociecha & E. Wilk-Woźniak, 2019. The effect of cyanobacterial blooms on bio-and functional diversity of zooplankton communities. Biodiversity and Conservation 28: 1815–1835.

    Article  Google Scholar 

  • Laliberté, E. & P. Legendre, 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91: 299–305.

    Article  Google Scholar 

  • Lawton, L., B. Marsalek, J. Padisák & I. Chorus, 1999. Determination of cyanobacteria in the laboratory. In Chorus, I. & J. Bartram (eds), Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management World Organizaton Health, London: 1–28.

    Google Scholar 

  • Longhi, M. L. & B. E. Beisner, 2010. Patterns in taxonomic and functional diversity of lake phytoplankton. Freshwater Biology 55: 1349–1366.

    Article  Google Scholar 

  • Loreau, M., 2010. Linking biodiversity and ecosystems: towards a unifying ecological theory. Philosophical Transactions of the Royal Society b: Biological Sciences 365: 49–60.

    Article  Google Scholar 

  • Lu, J., S. J. Faggotter, S. E. Bunn & M. A. Burford, 2017. Macrophyte beds in a subtropical reservoir shifted from a nutrient sink to a source after drying then rewetting. Freshwater Biology 62: 854–867.

    Article  Google Scholar 

  • Lu, J., S. E. Bunn & M. A. Burford, 2018. Nutrient release and uptake by littoral macrophytes during water level fluctuations. Science of the Total Environment 622: 29–40.

    Article  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Mackereth, F., J. Heron & J. Talling, 1978. Water Analysis: Some Revised Methods for Limnologists, Freshwater Biological Association, Ambleside:

    Google Scholar 

  • Magurran, A. E. & B. McGill, 2011. Biological Diversity: Frontiers in Measurement and Assessment, Oxford University Press, New York:

    Google Scholar 

  • Mason, N. W., D. Mouillot, W. G. Lee & J. B. Wilson, 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111: 112–118.

    Article  Google Scholar 

  • McQuoid, M. R., A. Godhe & K. Nordberg, 2002. Viability of phytoplankton resting stages in the sediments of a coastal Swedish fjord. European Journal of Phycology 37: 191–201.

    Article  Google Scholar 

  • Moi, D. A., D. C. Alves, P. A. P. Antiqueira, S. M. Thomaz, F. T. de Mello, C. C. Bonecker, L. Z. Rodrigues, R. García-Ríos & R. P. Mormul, 2021. Ecosystem shift from submerged to floating plants simplifying the food web in a tropical shallow lake. Ecosystems 24: 628–639.

    Article  Google Scholar 

  • Mormul, R. P., S. M. Thomaz, A. A. Agostinho, C. C. Bonecker & N. Mazzeo, 2012. Migratory benthic fishes may induce regime shifts in a tropical floodplain pond. Freshwater Biology 57: 1592–1602.

    Article  Google Scholar 

  • Mouchet, M. A., S. Villéger, N. W. Mason & D. Mouillot, 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24: 867–876.

    Article  Google Scholar 

  • Mulderij, G., E. H. Van Nes & E. Van Donk, 2007. Macrophyte–phytoplankton interactions: the relative importance of allelopathy versus other factors. Ecological Modelling 204: 85–92.

    Article  Google Scholar 

  • O’Neil, J. M., T. W. Davis, M. A. Burford & C. J. Gobler, 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14: 313–334.

    Article  Google Scholar 

  • Ohtaka, A., T. Narita, T. Kamiya, H. Katakura, Y. Araki, S. Im, R. Chhay & S. Tsukawaki, 2011. Composition of aquatic invertebrates associated with macrophytes in Lake Tonle Sap, Cambodia. Limnology 12: 137–144.

    Article  Google Scholar 

  • Padial, A. A., S. M. Thomaz & A. A. Agostinho, 2009. Effects of structural heterogeneity provided by the floating macrophyte Eichhornia azurea on the predation efficiency and habitat use of the small Neotropical fish Moenkhausia sanctaefilomenae. Hydrobiologia 624: 161–170.

    Article  Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Pielou, E. C., 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology 13: 131–144.

    Article  Google Scholar 

  • Popovský, J. & L. A. Pfiester, 1990. Dinophyceae (Dinoflagellida). In Ettl, H., J. Gerloff, H. Heyning & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa. Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Prescott, G. W., C. E. M. Bicudo & W. C. Vinyard, 1982. A Synopsis of North American Desmids. Part II. Section 4, The University of Nebraska Press, Lincoln:

    Google Scholar 

  • R Core Team, 2015. R: a language and environment for statistical computing. vers 3.2.2, R Foundation for Statistical Computing, Vienna.

  • Reynolds, C. S., 2006. The Ecology of Phytoplankton, Cambridge University Press, Cambridge:

    Book  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Schabhüttl, S., P. Hingsamer, G. Weigelhofer, T. Hein, A. Weigert & M. Striebel, 2013. Temperature and species richness effects in phytoplankton communities. Oecologia 171: 527–536.

    Article  Google Scholar 

  • Schindler, D. W., R. E. Hecky, D. L. Findlay, M. P. Stainton, B. R. Parker, M. J. Paterson, K. G. Beaty, M. Lyng & S. Kasian, 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences 105: 11254–11258.

    Article  Google Scholar 

  • Shannon, C. E. & W. Weaver, 1963. The Mathematical Theory of Communication, Illinois University Press, Urbana:

    Google Scholar 

  • Song, Y., M. A. D. Mowe, S. M. Mitrovic, H. T. W. Tan & D. C. J. Yeo, 2019. An ex situ mesocosm study of emergent macrophyte effects on phytoplankton communities. Fundamental and Applied Limnology/archiv Für Hydrobiologie 192: 225–235.

    Article  Google Scholar 

  • Sousa, E. B., S. L. dos Santos Pinto, A. L. Gomes, C. J. da Silva Cunha, V. B. da Costa Tavares & S. C. C. Pinheiro, 2020. Composition, richness and ecological index of phytoplankton of lake Bolonha (Belém, Pará). Brazilian Journal of Animal and Environmental Research 3: 3263–3275.

    Article  Google Scholar 

  • Steinman, A. D., M. E. Ogdahl, M. Weinert & D. G. Uzarski, 2014. Influence of water-level fluctuation duration and magnitude on sediment–water nutrient exchange in coastal wetlands. Aquatic Ecology 48: 143–159.

    Article  Google Scholar 

  • Stomp, M., J. Huisman, F. de Jongh, A. J. Veraart, D. Gerla, M. Rijkeboer, B. W. Ibelings, U. I. A. Wollenzien & L. J. Stal, 2004. Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432: 104–107.

    Article  Google Scholar 

  • Su, H., J. Chen, Y. Wu, J. Chen, X. Guo, Z. Yan, D. Tian, J. Fang & P. Xie, 2019. Morphological traits of submerged macrophytes reveal specific positive feedbacks to water clarity in freshwater ecosystems. Science of the Total Environment 684: 578–586.

    Article  Google Scholar 

  • They, N. H. & D. M. Marques, 2019. The structuring role of macrophytes on plankton community composition and bacterial metabolism in a large subtropical shallow lake. Acta Limnologica Brasiliensia 31: e19.

    Article  Google Scholar 

  • Tilman, D., J. Knops, D. Wedin, P. Reich, M. Ritchie & E. Siemann, 1997. The influence of functional diversity and composition on ecosystem processes. Science 277: 1300–1302.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik: mit 1 Tabelle und 15 abbildungen im Text und auf 1 Tafel. Internationale Vereinigung Für Theoretische Und Angewandte Limnologie: Mitteilungen 9: 1–38.

    Google Scholar 

  • Villéger, S., N. W. Mason & D. Mouillot, 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89: 2290–2301.

    Article  Google Scholar 

  • Wang, G. X., L. M. Zhang, H. Chua, X. D. Li, M. F. Xia & P. M. Pu, 2009. A mosaic community of macrophytes for the ecological remediation of eutrophic shallow lakes. Ecological Engineering 35: 582–590.

    Article  Google Scholar 

  • Weithoff, G., M. R. Rocha & U. Gaedke, 2015. Comparing seasonal dynamics of functional and taxonomic diversity reveals the driving forces underlying phytoplankton community structure. Freshwater Biology 60: 758–767.

    Article  Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses, Springer, New York:

    Book  Google Scholar 

  • Weyhenmeyer, G. A., H. Peter & E. V. A. Willén, 2013. Shifts in phytoplankton species richness and biomass along a latitudinal gradient–consequences for relationships between biodiversity and ecosystem functioning. Freshwater Biology 58: 612–623.

    Article  Google Scholar 

  • Xu, Y., T. Stoeck, D. Forster, Z. Ma, L. Zhang & X. Fan, 2018. Environmental status assessment using biological traits analyses and functional diversity indices of benthic ciliate communities. Marine Pollution Bulletin 131: 646–654.

    Article  Google Scholar 

  • Zhang, P., H. Zhang, H. Wang, S. Hilt, C. Li, C. Yu, M. Zhang & J. Xu, 2022. Warming alters juvenile carp effects on macrophytes resulting in a shift to turbid conditions in freshwater mesocosms. Journal of Applied Ecology 59: 165–175.

    Article  Google Scholar 

  • Zhou, X., Z. He, K. D. Jones, L. Li & P. J. Stoffella, 2017. Dominating aquatic macrophytes for the removal of nutrients from waterways of the Indian River Lagoon basin, South Florida, USA. Ecological Engineering 101: 107–119.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian National Council of Technological and Scientific Development—CNPq, Brazil (Grant ID 305829/2019-0), and Fundação de Amparo a Ciência e Tecnologia do Estado de Pernambuco—FACEPE, Brazil (Grant ID IBPG-0549-2.03/18). We are profoundly grateful to CA Amorim for the support and for critically proofreading the manuscript. We also thank to anonymous reviewers who improve this manuscript with their comments.

Funding

This work was supported by the Brazilian National Council of Technological and Scientific Development—CNPq, Brazil (Grant ID 305829/2019–0), and Fundação de Amparo a Ciência e Tecnologia do Estado de Pernambuco—FACEPE, Brazil (Grant ID IBPG-0549–2.03/18).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study design. ASD performed the material preparation, data collection and analysis and wrote the draft paper. ASD and EWD participated in performing the statistical analyses. ANM participated in conceiving the study and interpreting data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ariadne do Nascimento Moura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Andrew Dzialowski

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diniz, A.S., Dantas, Ê.W. & do Nascimento Moura, A. The role of floating and submerged macrophytes in the phytoplankton taxonomic and functional diversity in two tropical reservoirs. Hydrobiologia 850, 347–363 (2023). https://doi.org/10.1007/s10750-022-05073-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-05073-7

Keywords

Navigation