Skip to main content
Log in

Impact of zooplankton grazing on phytoplankton in north temperate coastal lakes: changes along gradients in salinity and nutrients

  • Effects of Changes in Salinity
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Zooplankton grazing at similar nutrient levels is generally regarded as lower in brackish than in freshwater lakes, but experimental evidence of this is lacking. Accordingly, we conducted short-term zooplankton grazing experiments in bottles with water from 12 Danish brackish lakes covering a large gradient in salinity (0.3–17.4‰) and nutrient concentrations as well as with water from 24 mesocosms established in the same area with various salinities (0.5–12‰), two nutrient levels and low fish density. Grazing was low in 11 of the 12 lakes, even when they were dominated by edible phytoplankton and nutrient addition led to a major increase in phytoplankton biomass. By contrast, grazing was significant in most of the mesocosms, particularly at high nutrient levels and salinities of 8‰ or below where Daphnia dominated. Moreover, grazing decreased the biomass of most phytoplankton taxa, except for a few (e.g. Ankyra at 0.5–2‰ and Ochromonas and Chaetoceros at 8‰). Our results provide experimental support for potentially significant grazing by zooplankton on phytoplankton in brackish lakes up to a salinity of 8‰ at low fish density; however, grazing in summer was generally low in the majority of the lakes, which we attribute to high predation on zooplankton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data are available from the authors on reasonable requests.

Consent for publication

All the authors consent the publication of this manuscript.

References

  • Aaser, H. P., E. Jeppesen & M. Søndergaard, 1995. Seasonal dynamics of the mysid Neomysis integer and its predation on the copepod Eurytemora affinis in a shallow hypertrophic brackish lake. Marine Ecology Progress Series 127: 47–56.

    Article  Google Scholar 

  • Andersson, G., H. Berggren, G. Cronberg & C. Gelin, 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15.

    Article  CAS  Google Scholar 

  • Arai, T., D. Ueno, T. Kitamura & A. Goto, 2020. Habitat preference and diverse migration in three spine sticklebacks, Gasterosteus aculeatus and G nipponicus. Scientific Reports 10: 14311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baillieul, M., B. De Wachter & R. Blust, 1998. Effect of salinity on the swimming velocity of the water flea Daphnia magna. Physiological Zoology 71: 703–707.

    Article  CAS  PubMed  Google Scholar 

  • Brucet, S., D. Boix, X. D. Quintana, E. Jensen, L. Nathansen, C. Trochine, M. Meerhoff, S. Gascon & E. Jeppesen, 2010. Factors influencing zooplankton size structure at contrasting temperatures in shallow brackish lagoons: implications for effects of climate change. Limnology and Oceanography 54: 1697–1711.

    Article  Google Scholar 

  • Brucet, S., D. Boix, L. W. Nathansen, X. D. Quintana, E. Jensen, D. Balayla, M. Meerhoff & E. Jeppesen, 2012. Effects of temperature, salinity and fish in structuring the macroinvertebrate community in shallow lakes: implications for effects of climate change. PLoS ONE 7: e30877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns, C., 1968. The relationship between body size of filter feeding Cladocera and the maximum size of particle ingested. Limnology and Oceanography 13: 675–678.

    Article  Google Scholar 

  • Callieri, C., G. Cronberg & J. G. Stockner, 2012. Freshwater Picocyanobacteria: single cells, microcolonies and colonial forms. In Whitton, B. A. (ed), Ecology of Cyanobacteria II Springer, Dordrecht: 229–269.

    Chapter  Google Scholar 

  • Carrillo, P., L. Cruz-Pizarro & P. Sanchez-Castillo, 1990. Analysis of phytoplankton–zooplankton relationships in an oligotrophic lake under natural and manipulated conditions. Hydrobiologia 200: 49–58.

    Article  Google Scholar 

  • Dawidowicz, P., 1990. Effectiveness of phytoplankton control by large-bodied and small-bodied zooplankton. Hydrobiologia 200: 43–47.

    Article  Google Scholar 

  • Demott, W. R., 1982. Feeding selectivities and relative ingestion rates of Daphnia and Bosmina. Limnology and Oceanography 27: 518–527.

    Article  Google Scholar 

  • Devlin, S. P., S. K. Tappenbeck, J. A. Craft, T. H. Tappenbeck, D. W. Chess, D. C. Whited, B. K. Ellis & J. A. Stanford, 2017. Spatial and temporal dynamics of invasive freshwater shrimp (Mysis diluviana): long-term effects on ecosystem properties in a large oligotrophic lake. Ecosystems 20: 183–197.

    Article  CAS  Google Scholar 

  • Diekmann, A. B. S., C. Clemmesen, M. A. St, M. Paulsen. John & M. A. Peck, 2012. Environmental cues and constraints affecting the seasonality of dominant calanoid copepods in brackish, coastal waters: a case study of Acartia, Temora and Eurytemora species in the south-west Baltic. Marine Biology 159: 2399–2414.

    Article  Google Scholar 

  • Elser, J. J., N. C. Goff, N. C. MacKay, A. L. Amand, M. M. Elser & S. R. Carpenter, 1987. Species-specific algal responses to zooplankton: experimental and field observations in three nutrient-limited lakes. Journal of Plankton Research 9: 699–717.

    Article  Google Scholar 

  • Fowler, J., L. Cohen & P. Jarvis, 1998. Practical Statistics for Field Biology, 2nd ed. Wiley, Hoboken:

    Google Scholar 

  • Ger, K. A., S. Naus-Wiezer, L. De Meester & M. Lürling, 2019. Zooplankton grazing selectivity regulates herbivory and dominance of toxic phytoplankton over multiple prey generations. Limnology and Oceanography 64: 1214–1227.

    Article  Google Scholar 

  • Gutierrez, M. G., U. N. Tavsanoglu, N. Vidal, J. Yu, F. Teixeira-de Mello, A. I. Cakiroglu, H. He, Z. Liu & E. Jeppesen, 2018. Salinity shapes zooplankton communities and functional diversity and has complex effects on size structure in lakes. Hydrobiologia 813: 237–255.

    Article  Google Scholar 

  • Hald-Mortensen, P., 1998. Vejlernes Natur – Status 1998, Aage V. Jensens Fonde, København:

    Google Scholar 

  • Hansen, A. M., E. Jeppesen, S. Bosselman & P. Andersen, 1992. Zooplankton i søer – metoder og artslister. [Zooplankton in lakes – methods and list of species]. Miljøprojekt 205, Miljøministeriet (in Danish).

  • He, H., E. Jeppesen, D. Bruhn, M. Yde, J. Kjerulf Hansen, L. Spanggaard, N. Madsen, W. Liu, M. Søndergaard & T. L. Lauridsen, 2020. Decadal changes in zooplankton biomass, composition and body mass in four temperate shallow brackish lakes subjected to various degrees of eutrophication. Inland Waters 10: 186–196.

    Article  CAS  Google Scholar 

  • Heerkloss, R., W. Schnee & B. Adamkiewicz-Chojnacka, 1991. Seasonal variation in the biomass of zooplankton in two shallow coastal water inlets differing in their stage of eutrophication. International Revue Der Gesamtes Hydrobiologie 76: 397–404.

    Article  Google Scholar 

  • Irvine, K., M. Bales, B. Moss, J. Stansfield & D. Snook, 1990. Trophic relations in Hickling Broad – a shallow and brackish eutrophic lake. Verhandlungen Der Internatationale Vereinigung Der Limnologie 24: 576–579.

    Google Scholar 

  • Jakobsen, T., P. Hansen, E. Jeppesen & M. Søndergaard, 2004. Cascading effect of three-spined stickleback Gasterosteus aculeatus on community composition, size, biomass and diversity of phytoplankton in shallow, eutrophic brackish lagoons. Marine Ecology Progress Series 279: 305–309.

    Article  Google Scholar 

  • Jensen, J. P., E. Jeppesen, M. Søndergaard & K. Jensen, 1996. Interkalibrering af dyreplanktonundersøgelser i søer. [Intercalibration of zooplankton investigations in lakes] DMU, Miljøministeriet (in Danish).

  • Jensen, E., S. Brucet, M. Meerhoff, L. Nathansen & E. Jeppesen, 2010. Community structure and diel migration of zooplankton in brackish lakes: role of salinity and predators. Hydrobiologia 646: 215–229.

    Article  CAS  Google Scholar 

  • Jeppesen, E., M. Søndergaard, E. Kanstrup, B. Petersen, R. B. Eriksen, M. Hammershøj, E. Mortensen, J. P. Jensen & A. Have, 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia 275: 15–30.

    Article  Google Scholar 

  • Jeppesen, E., M. Søndergaard, J. P. Jensen, E. Kanstrup & B. Petersen, 1998. Macrophytes and turbidity in brackish lakes with special emphasis on the role of top-down control. In: Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies 131. Springer, Berlin: 91–114.

  • Jeppesen, E., J. P. Jensen, C. Jensen, B. Faafeng, P. Brettum, D. Hessen, M. Søndergaard, T. Lauridsen & K. Christoffersen, 2003. The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: study of 466 lakes from the temperate zone to the Arctic. Ecosystems 6: 313–325.

    Article  CAS  Google Scholar 

  • Jeppesen, E., M. Søndergaard, A. R. Pedersen, K. Jürgens, A. Strzelczak, T. L. Lauridsen & L. S. Johansson, 2007. Salinity induced regime shift in shallow brackish lagoons. Ecosystems 10: 47–57.

    Article  CAS  Google Scholar 

  • Jeppesen, E., M. Søndergaard, T. L. Lauridsen, T. A. Davidson, Z. Liu, N. Mazzeo, C. Trochine, K. Özkan, H. S. Jensen, D. Trolle, F. Starling, X. Lazzaro, L. S. Johansson, R. Bjerring, L. Liboriussen, S. E. Larsen, F. Landkildehus & M. Meerhoff, 2012. Biomanipulation as a restoration tool to combat eutrophication: recent advances and future challenges. Advances in Ecological Research 47: 411–487.

    Article  Google Scholar 

  • Koroleff, F., 1976a. Determination of total nitrogen after a persulphate oxidation. In Grasshoff, K. (ed), Methods of Seawater Analysis Verlag Chemie, Weinheim: 168–172.

    Google Scholar 

  • Koroleff, F., 1976b. Determination of total phosphorus. In Grasshoff, K. (ed), Methods of Seawater Analysis Verlag Chemie, Weinheim: 123–125.

    Google Scholar 

  • Lampert, W., W. Fleckner, H. Rai & B. E. Taylor, 1986. Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnology and Oceanography 31: 478–490.

    Article  Google Scholar 

  • Latta, L. C., L. J. Weider, J. K. Colbourne & M. E. Pfrender, 2012. The evolution of salinity tolerance in Daphnia: a functional genomics approach. Ecology Letters 15: 794–802.

    Article  PubMed  Google Scholar 

  • Leah, R. T., B. Moss & D. E. Forrest, 1978. Experiments with large mesocosms in a fertile, shallow, brackish lake, Hickling Broad, Norfolk, United Kingdom. International Revue Der Gesamtes Hydrobiologie 63: 291–310.

    Article  CAS  Google Scholar 

  • Lehman, J. T., 1980. Release and cycling of nutrients between planktonic algae and herbivores. Limnology and Oceanography 25: 620–632.

    Article  CAS  Google Scholar 

  • Lehman, J. T. & D. Scavia, 1982. Microscale patchiness of nutrients in plankton communities. Science 216: 729–730.

    Article  CAS  PubMed  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Lundgren, V., E. Graneli & S. Pflugmacher, 2012. Influence of Acartia cf. bifilosa (Copepoda) on morphology and toxicity of Nodularia spumigena (Cyanophyceae). Harmful Algae 18: 35.

    Article  Google Scholar 

  • Lynch, M. & J. Shapiro, 1981. Predation, enrichment, and phytoplankton community structure. Limnology and Oceanography 26: 86–102.

    Article  Google Scholar 

  • Lürling, M., 2021. Grazing resistance in phytoplankton. Hydrobiologia 848: 237–249.

    Article  Google Scholar 

  • Mayeli, S. M., S. S. Nandini & S. S. S. Sarma, 2005. The efficacy of Scenedesmus morphology as a defense mechanism against grazing by selected species of rotifers and cladocerans. Aquatic Ecology 38: 515–524.

    Article  Google Scholar 

  • Moss, B., J. Stansfield & K. Irvine, 1991. Development of daphnid communities in diatom- and cyanophyte-dominated lakes and their relevance to lake restoration by biomanipulation. Journal of Applied Ecology 28: 586–602.

    Article  Google Scholar 

  • Moss, B., 1994. Brackish and freshwater shallow lakes – different systems or variations on the same theme? Hydrobiologia 275: 1–14.

    Google Scholar 

  • Motwani, N. H., J. Duberg, J. B. Sveden & E. Gorokhova, 2018. Grazing on cyanobacteria and transfer of diazotrophic nitrogen to zooplankton in the Baltic Sea. Limnology and Oceanography 63: 672–686.

    Article  Google Scholar 

  • Moustaka-Gouni, M. & U. Sommer, 2020. Effects of harmful blooms of large-sized and colonial cyanobacteria on aquatic food webs. Water 12: 1587.

    Article  Google Scholar 

  • Møller, H. S. 1980. Naturforholdene i Vejlerne - En beskrivelse af udviklingen i det videnskabelige reservat Vejlerne i 1900-årene. Fredningsstyrelsens forskningsrapport.

  • Muylaert, K. & K. Sabbe, 1999. Spring phytoplankton assemblages in and around the maximum turbidity zone of the estuaries of the Elbe (Germany), the Schelde (Belgium/The Netherlands) and the Gironde (France). Journal of Marine Systems 22: 133–149.

    Article  Google Scholar 

  • Nche-Fambo, F. A., U. M. Scharler & K. Tirok, 2015. Resilience of estuarine phytoplankton and their temporal variability along salinity gradients during drought and hypersalinity. Estuarine, Coastal and Shelf Science 158: 40–52.

    Article  CAS  Google Scholar 

  • Nielsen, T. V. 1998. Årsrapport 1996. Vejlerne. Naturovervågning. Danmarks miljøundersøgelser. Nr. 81. 80p.

  • O’Malley, B. P. & D. B. Bunnell, 2014. Diet of Mysis diluviana reveals seasonal patterns of omnivory and consumption of invasive species in offshore Lake Michigan. Journal of Plankton Research 36: 989–1002.

    Article  Google Scholar 

  • Obolewski, K., K. Glińska-Lewczuk, M. Bąkowska, M. Szymańska & N. Mrozińska, 2018. Patterns of phytoplankton composition in coastal lakes differed by connectivity with the Baltic Sea. Science of the Total Environment 631–632: 951–961.

    Article  PubMed  Google Scholar 

  • Olrik, K. 1991. Planteplanktonmetoder – prøvetagning, bearbejdning og rapportering ved undersøgelser af planteplankton i søer og marine områder. Miljøprojekt nr. 187. Miljøministeriet. Miljøstyrelsen. 107p.

  • Olrik, K. 1993. Planteplanktonøkologi. Miljøprojekt nr. 243. Miljøministeriet. Miljøstyrelsen. 165p.

  • Ortells, R., T. B. H. Reusch & W. Lampert, 2005. Salinity tolerance in Daphnia magna: characteristics of genotypes hatching from mixed sediments. Oecologia 143: 509–516.

    Article  PubMed  Google Scholar 

  • Paerl, H. W., T. G. Otten & R. Kudela, 2018. Mitigating the expansion of harmful algal blooms across the freshwater-to-marine continuum. Environmental Science and Technology 52: 5519–5529.

    Article  CAS  PubMed  Google Scholar 

  • Pace, M., J. J. Cole, S. R. Carpenter & J. F. Kitchell, 1999. Trophic cascades revealed in diverse ecosystems. Trends in Ecology and Evolution 14: 483–488.

    Article  CAS  PubMed  Google Scholar 

  • Peltomaa, E., H. Hällfors & S. J. Taipale, 2019. Comparison of diatoms and dinoflagellates from different habitats as sources of PUFAs. Marine Drugs 17: 233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfister, G., B. Auer & H. Arndt, 2002. Pelagic ciliates (Protozoa, Ciliophora) of different brackish and freshwater lakes – a community analysis at the species level. Limnologica 32: 147–168.

    Article  Google Scholar 

  • Porter, K. G., 1973. Selective grazing and differential digestion of algae by zooplankton. Nature 244: 179–180.

    Article  Google Scholar 

  • Pourriot, R., 1977. Food and feeding habits of rotifera. Archiv Für Hydrobiologie 8: 243–260.

    Google Scholar 

  • Rakhesh, M., K. S. V. K. S. Madhavirani, B. Charan Kumar, A. V. Raman, C. Kalavati, Y. Prabhakara Rao, S. Rosamma, V. Ranga Rao, G. V. M. Gupta & B. R. Subramanian, 2015. Trophic-salinity gradients and environmental redundancy resolve mesozooplankton dynamics in a large tropical coastal lagoon. Regional Studies in Marine Science 1: 72–84.

    Article  Google Scholar 

  • Remerie, T., A. Vierstraete, P. H. H. Weekers, J. R. Vanfleteren & A. Vanreusel, 2009. Phylogeography of an estuarine mysid, Neomysis integer (Crustacea, Mysida), along the north-east Atlantic coasts. Journal of Biogeography 36: 39–54.

    Article  Google Scholar 

  • Reinertsen, H. & Y. Olsen, 1984. Effects of fish elimination on the phytoplankton community of a eutrophic lake. Verhandlungen Der Internationalen Vereinigung Der Limnologie 22: 649–657.

    Google Scholar 

  • Riemann, B. & D. Ernst, 1982. Extraction of chlorophylls a and b from phytoplankton using standard extraction techniques. Freshwater Biology 12: 217–223.

    Article  CAS  Google Scholar 

  • Rothhaupt, K. O., 1990. Differences in particle size-dependent feeding efficiencies of closely related rotifer species. Limnology and Oceanography 34: 16–23.

    Article  Google Scholar 

  • Sabbe, K., E. Verleyen, D. A. Hodgson, K. Vanhoutte & W. Vyverman, 2003. Benthic diatom flora of freshwater and saline lakes in the Larsemann Hills and Rauer Islands, East Antarctica. Antarctic Science 15: 227–248.

    Article  Google Scholar 

  • Schiewer, U., R. Börner & N. Wasmund, 1988. Deterministic and stochastic influence of nutrients on phytoplankton function and structure in coastal waters. Kieler Meeresforschung Sonderhef 6: 173–183.

    Google Scholar 

  • Schiewer, U., 1998. 30 Years eutrophication in shallow brackish waters – lessons to be learned. Hydrobiologia 363: 7–79.

    Google Scholar 

  • Schindler, J. E., 1971. Food quality and zooplankton nutrition. Journal of Animal Ecology 40: 589–595.

    Article  Google Scholar 

  • Schoenberg, S. A. & R. E. Carlson, 1984. Direct and indirect effects of zooplankton grazing on phytoplankton in a hypereutrophic lake. Oikos 42: 291–302.

    Article  CAS  Google Scholar 

  • Shetty, P., M. M. Gitau & G. Maróti, 2019. Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae. Cells 8: 1657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommer, U., 1989. Nutrient status and nutrient competition of phytoplankton in a shallow, hypertrophic lake. Limnology and Oceanography 34: 1162–1173.

    Article  CAS  Google Scholar 

  • Sommer, F., T. Hansen & U. Sommer, 2006. Transfer of diazotrophic nitrogen to mesozooplankton in Kiel Fjord, Western Baltic Sea: a mesocosm study. Marine Ecology Progress Series 324: 105–112.

    Article  CAS  Google Scholar 

  • Sterner, R. W., 1986. Herbivores’ direct and indirect effects on algal populations. Science 231: 605–607.

    Article  CAS  PubMed  Google Scholar 

  • Søndergaard, M., E. Jeppesen, E. Mortensen, E. Dall, P. Kristensen & O. Sortkjær, 1990. Phytoplankton biomass reduction after planktivorous fish reduction in a shallow, eutrophic lake: a combined effect of reduced internal P-loading and increased zooplankton grazing. Hydrobiologia 200: 229–240.

    Article  Google Scholar 

  • Søndergaard, M., E. Jeppesen & H. F. Aaser, 2000. Neomysis integer in a shallow hypertrophic brackish lake: distribution and predation by three-spined stickleback (Gasterosteus aculeatus). Hydrobiologia 428: 151–159.

    Article  Google Scholar 

  • Søndergaard, M., E. Jeppesen, T. L. Lauridsen, C. Skov, E. H. Van Nes, R. Roijackers, E. Lammens & R. Portielje, 2007. Lake restoration in Denmark and The Netherlands: successes, failures and long-term effects. Journal of Applied Ecology 44: 1095–1105.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitt Internationale Vereinigung Für Theoretische Und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Vanni, M. J., 1987. Effects of nutrients and zooplankton size on the structure of a phytoplankton community. Ecology 68: 624–635.

    Article  Google Scholar 

  • Vyhnálek, V., 1983. Effect of filter-feeding zooplankton on phytoplankton in fish ponds. International Revue Der Gesamtes Hydrobiologie 68: 397–410.

    Article  Google Scholar 

  • Wasmund, N. & V. Kell, 1991. Characterization of brackish coastal waters of different trophic levels by means of phytoplankton biomass and primary production. International Revue Der Gesamtes Hydrobiologie 76: 361–370.

    Article  Google Scholar 

  • Zadereev, E. S., T. S. Lopatina, S. D. Ovchinnikov, N. A. Oskina, A. V. Drobotov & A. P. Tolomeev, 2022a. The effect of salinity on the grazing rate and survival of Daphnia magna females adapted to different salinities. Aquatic Ecology 56: 639–652.

    Article  Google Scholar 

  • Zadereev, E., A. Drobotov, O. Anishchenko, A. Kolmakova, T. Lopatina, N. Oskina & A. Tolomeev, 2022b. The structuring effects of salinity and nutrient status on zooplankton communities and trophic structure in Siberian lakes. Water 14: 1468.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Anne Mette Poulsen for valuable English editions.

Funding

The project was supported by Aage V. Jensen Nature Foundation, Project “Østlige Vejler”, Denmark. EJ and CAA were also supported by the TÜBİTAK Program BIDEB2232 (Project 118C250).

Author information

Authors and Affiliations

Authors

Contributions

IC and LKP conceptualization, methodology, formal analysis, investigation, data curation and writing—original draft, ST, CAA, JPP, TLL and MS investigation review and editing, EJ and KR conceptualization, methodology, funding acquisition, writing, review and editing and supervision.

Corresponding author

Correspondence to Erik Jeppesen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable/not required.

Informed consent

All the authors consent to participate in this manuscript.

Additional information

Handling editor: Sidinei M. Thomaz

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Erik Jeppesen, Miguel Cañedo-Argüelles, Sally Entrekin, Judit Padisák & S.S.S. Sarma / Effects of induced changes in salinity on inland and coastal water ecosystems

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christensen, I., Pedersen, L.K., Søndergaard, M. et al. Impact of zooplankton grazing on phytoplankton in north temperate coastal lakes: changes along gradients in salinity and nutrients. Hydrobiologia 850, 4609–4626 (2023). https://doi.org/10.1007/s10750-022-05017-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-05017-1

Keywords

Navigation