Skip to main content

Advertisement

Log in

Pulsed vs. chronic salinization effects on microbial-mediated leaf litter decomposition in fresh waters

  • EFFECTS OF CHANGES IN SALINITY
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Freshwater salinization is a growing worldwide threat affecting the structure and functioning of aquatic systems. Increased salinity frequently occurs as result of human activities that determine chronic or, less commonly studied, pulsed contamination of streams and rivers. Here we compared the effects of both patterns of salt addition (i.e. continuous vs. 2 consecutive days/week exposure), within the same ionic concentrations (1, 4 or 6 g l−1 NaCl), on microbial-mediated litter decomposition and associated microbial endpoints. Mass loss of oak leaf litter was consistently depressed by salinization with stronger effects at the highest concentrations, despite the pattern of salt addition. At higher (≥ 4 g l−1) salt concentrations, chronic salt exposure was more deleterious than pulsed inputs to microbial activity, reproductive outputs and fungal richness, despite no effects on fungal biomass. Overall, results suggest that the effective salt concentration to alter fungal activity should be greater in pulsed (vs. chronic) salinization, as intervals between salt pulses seem to facilitate a total or partial recovery of microbial functions. We suggest that, along with the concentration, attention should be devoted to the dynamics of salt contamination when analyzing the consequences of salinization in streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Abelho, M., 2001. From litterfall to breakdown in streams: a review. The Scientific World Journal 1: 656–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida Júnior, E. S., A. Martínez, A. L. Gonçalves & C. Canhoto, 2020. Combined effects of freshwater salinization and leaf traits on litter decomposition. Hydrobiologia 847: 3427–3435.

    Article  Google Scholar 

  • Arroita, M., L. Flores, A. Larrañaga, E. Chauvet & A. Elosegi, 2018. Hydrological contingency: drying history affects aquatic microbial decomposition. Aquatic Sciences 80: 31.

    Article  Google Scholar 

  • Cañedo-Argüelles, M., M. Bundschuh, C. Gutiérrez-Cánovas, B. J. Kefford, N. Prat, R. Trobajo & R. B. Schäfer, 2014. Effects of repeated salt pulses on ecosystem structure and functions in a stream mesocosm. Science of the Total Environment 476: 634–642.

    Article  PubMed  Google Scholar 

  • Cañedo-Argüelles, M., C. P. Hawkins, B. J. Kefford, R. B. Schäfer, B. J. Dyack, S. Brucet, D. Buchwalter, J. Dunlop, O. Frör, J. Lazorchak, et al., 2016. Saving freshwater from salts. Science 351: 914–916.

    Article  PubMed  Google Scholar 

  • Canhoto, C., F. Bärlocher, M. Cañedo-Argüelles, R. Gómez & A. L. Gonçalves, 2021. Salt modulates plant litter decomposition in stream ecosystems. In Swan, C. M. & L. Boyero (eds), The Ecology of Plant Litter Decomposition in Stream Ecosystems Springer, Cham: 323–345.

    Chapter  Google Scholar 

  • Canhoto, C., S. Simões, A. L. Gonçalves, L. Guilhermino & F. Bärlocher, 2017. Stream salinization and fungal-mediated leaf decomposition: a microcosm study. Science of the Total Environment 599: 1638–1645.

    Article  PubMed  Google Scholar 

  • Castillo, A. M., D. M. T. Sharpe, C. K. Ghalambor & L. F. De León, 2018. Exploring the effects of salinization on trophic diversity in freshwater ecosystems: a quantitative review. Hydrobiologia 807: 1–17.

    Article  CAS  Google Scholar 

  • Clements, W. H. & C. Kotalik, 2016. Effects of major ions on natural benthic communities: an experimental assessment of the US Environmental Protection Agency aquatic life benchmark for conductivity. Freshwater Science 35: 126–138.

    Article  Google Scholar 

  • da Silva, J. P., A. Martínez, A. L. Gonçalves, F. Bärlocher & C. Canhoto, 2021. Fungal richness does not buffer the effects of streams salinization on litter decomposition. Annales De Limnologie-International Journal of Limnology 57: 5.

  • Dang, C. K., E. Chauvet & M. O. Gessner, 2005. Magnitude and variability of process rates in fungal diversity-litter decomposition relationships. Ecology Letters 8: 1129–1137.

    Article  PubMed  Google Scholar 

  • Entrekin, S. A., N. A. Clay, A. Mogilevski, B. Howard-Parker & M. A. Evans-White, 2019. Multiple riparian-stream connections are predicted to change in response to salinization. Philosophical Transactions of the Royal Society b: Biological Sciences 374: 20180042.

    Article  CAS  Google Scholar 

  • Ferreira, V., B. Castagneyrol, J. Koricheva, V. Gulis, E. Chauvet & M. A. S. Graça, 2015. A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams. Biological Reviews 90: 669–688.

    Article  PubMed  Google Scholar 

  • Gessner, M. O. & E. Chauvet, 1993. Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Applied and Environmental Microbiology 59: 502–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves, A. L., A. Carvalho, F. Bärlocher & C. Canhoto, 2019. Are fungal strains from salinized streams adapted to salt-rich conditions? Philosophical Transactions of the Royal Society b: Biological Sciences 374: 20180018.

    Article  Google Scholar 

  • Graça, M. A. S., F. Bärlocher & M. O. Gessner, 2005. Methods to Study Litter Decomposition: A Practical Guide, Springer, Amsterdam.

  • Gulis, V. & K. Suberkropp, 2003. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwater Biology 48: 123–134.

    Article  Google Scholar 

  • Hall, R. O., G. E. Likens & H. M. Malcom, 2001. Trophic basis of invertebrate production in 2 streams at the Hubbard Brook Experimental Forest. Journal of the North American Benthological Society 20: 432–447.

    Article  Google Scholar 

  • Hieber, M. & M. O. Gessner, 2002. Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology: the Ecological Society of America 83: 1026–1038.

    Article  Google Scholar 

  • Hintz, W. D. & R. A. Relyea, 2019. A review of the species, community, and ecosystem impacts of road salt salinisation in fresh waters. Freshwater Biology 64: 1081–1097.

    Article  Google Scholar 

  • Kaiser, C., O. Franklin, U. Dieckmann & A. Richter, 2014. Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecology Letters 17: 680–690.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaspari, M., 2020. The seventh macronutrient: How sodium shortfall ramifies through populations, food webs and ecosystems. Ecology Letters 23: 1153–1168.

    Article  PubMed  Google Scholar 

  • Kaushal, S. S., G. E. Likens, M. L. Pace, R. M. Utz, S. Haq, J. Gorman & M. Grese, 2018. Freshwater salinization syndrome on a continental scale. Proceedings of the National Academy of Sciences USA 115: E574–E583.

    Article  CAS  Google Scholar 

  • Kefford, B. J., D. Buchwalter, M. Canedo-Argüelles, J. Davis, R. P. Duncan, A. Hoffmann & R. Thompson, 2016. Salinized rivers: degraded systems or new habitats for salt-tolerant faunas? Biology Letters the Royal Society 12: 20151072.

    Article  Google Scholar 

  • Marshall, N. A. & P. C. E. Bailey, 2004. Impact of secondary salinisation on freshwater ecosystems: effects of contrasting, experimental, short-term releases of saline wastewater on macroinvertebrates in a lowland stream. Marine and Freshwater Research 55: 509–523.

    Article  CAS  Google Scholar 

  • Martínez, A., J. Barros, A. L. Gonçalves & C. Canhoto, 2020a. Salinisation effects on leaf litter decomposition in fresh waters: does the ionic composition of salt matter? Freshwater Biology 65: 1475–1483.

  • Martínez, A., A. L. Gonçalves & C. Canhoto, 2020b. Salinization effects on stream biofilm functioning. Hydrobiologia 847: 1453–1459.

    Article  Google Scholar 

  • Mora-Gómez, J., S. Duarte, F. Cássio, C. Pascoal & A. M. Romaní, 2018. Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream. Science of the Total Environment 621: 486–496.

    Article  PubMed  Google Scholar 

  • Oliveira, R., A. Martínez, A. L. Gonçalves, E. S. A. Júnior & C. Canhoto, 2021. Salt pulses effects on in-stream litter processing and recovery capacity depend on substrata quality. Science of the Total Environment 783: 147013.

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

  • Reis, F., E. Nascimento, H. Castro, C. Canhoto, A. L. Gonçalves, S. Simões, P. García-Palacios, R. Milla, J. P. Sousa & P. M. da Silva, 2018. Land management impacts on the feeding preferences of the woodlouse Porcellio dilatatus (Isopoda: Oniscidea) via changes in plant litter quality. Applied Soil Ecology 132: 45–52.

    Article  Google Scholar 

  • Sauer, F. G., M. Bundschuh, J. P. Zubrod, R. B. Schäfer, K. Thompson & B. J. Kefford, 2016. Effects of salinity on leaf breakdown: dryland salinity versus salinity from a coalmine. Aquatic Toxicology 177: 425–432.

    Article  CAS  PubMed  Google Scholar 

  • Schäfer, R. B., M. Bundschuh, D. A. Rouch, E. Szöcs, P. C. von der Ohe, V. Pettigrove, R. Schulz, D. Nugegoda & B. J. Kefford, 2012. Effects of pesticide toxicity, salinity and other environmental variables on selected ecosystem functions in streams and the relevance for ecosystem services. Science of the Total Environment 415: 69–78.

    Article  PubMed  Google Scholar 

  • Schnürer, J. & T. Rosswall, 1982. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Applied and Environmental Microbiology 43: 1256–1261.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinsabaugh, R. L., M. M. Carreiro & S. Alvarez, 2002. Enzyme and Microbial Dynamics of Litter Decomposition. Enzymes in the Environment, Activity, Ecology, and Applications, Marcel Dekker, New York:, 249–265.

    Google Scholar 

  • Suárez, M. L., M. M. Sánchez-Montoya, R. Gómez, M. I. Arce, R. Del Campo & M. R. Vidal-Abarca, 2017. Functional response of aquatic invertebrate communities along two natural stress gradients (water salinity and flow intermittence) in Mediterranean streams. Aquatic Sciences 79: 1–12.

    Article  Google Scholar 

  • Swisher, R. & G. C. Carroll, 1980. Fluorescein diacetate hydrolysis as an estimator of microbial biomass on coniferous needle surfaces. Microbial Ecology 6: 217–226.

    Article  CAS  PubMed  Google Scholar 

  • Szöcs, E., E. Coring, J. Bäthe & R. B. Schäfer, 2014. Effects of anthropogenic salinization on biological traits and community composition of stream macroinvertebrates. Science of the Total Environment 468: 943–949.

    Article  PubMed  Google Scholar 

  • Tank, J. L., E. J. Rosi-Marshall, N. A. Griffiths, S. A. Entrekin & M. L. Stephen, 2010. A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society 29: 118–146.

    Article  Google Scholar 

  • Tiegs, S. D., D. M. Costello, M. W. Isken, G. Woodward, P. B. McIntyre, M. O. Gessner, E. Chauvet, N. A. Griffiths, A. S. Flecker, V. Acuña, et al., 2019. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances 5: eaav0486.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tyree, M., N. Clay, S. Polaskey & S. Entrekin, 2016. Salt in our streams: even small sodium additions can have negative effects on detritivores. Hydrobiologia 775: 109–122.

    Article  CAS  Google Scholar 

  • Velasco, J., C. Gutiérrez-Cánovas, M. Botella-Cruz, D. Sánchez-Fernández, P. Arribas, J. A. Carbonell, A. Millán & S. Pallarés, 2019. Effects of salinity changes on aquatic organisms in a multiple stressor context. Philosophical Transactions of the Royal Society b: Biological Sciences 374: 20180011.

    Article  CAS  Google Scholar 

  • Venâncio, C., B. B. Castro, R. Ribeiro, S. C. Antunes, N. Abrantes, A. Soares & I. Lopes, 2019. Sensitivity of freshwater species under single and multigenerational exposure to seawater intrusion. Philosophical Transactions of the Royal Society b: Biological Sciences 374: 20180252.

    Article  Google Scholar 

  • Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277: 102–104.

    Article  CAS  Google Scholar 

  • Webster, J. R., 2007. Spiraling down the river continuum: stream ecology and the U-shaped curve. Journal of the North American Benthological Society 26: 375–389.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Prof. Felix Bärlocher for the English revision and helpful comments on the manuscript. This study was supported by a) Project UIDP/04004/2020 co-funded by FCT/MEC through national funds and by FEDER, within the PT2020 Partnership Agreement, and COMPETE 2020; and b) Project ReNATURE — Valorization of the Natural Endogenous Resources of the Centro Region (Centro 2020, Centro-01-0145-FEDER-000007), which also supported AM (fellowship reference ReNATURE – BPD11_2).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

CC and ALG contributed to the study conception and design. Material preparation, data collection and analysis were performed by RO, ALG and AM. The first draft of the manuscript was written by CC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cristina Canhoto.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Guest editors: Erik Jeppesen, Miguel Cañedo-Argüelles, Sally Entrekin, Judit Padisák & S.S.S. Sarma / Effects of induced changes in salinity on inland and coastal water ecosystems.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canhoto, C., Oliveira, R., Martínez, A. et al. Pulsed vs. chronic salinization effects on microbial-mediated leaf litter decomposition in fresh waters. Hydrobiologia 850, 4547–4556 (2023). https://doi.org/10.1007/s10750-022-04991-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04991-w

Keywords

Navigation