Skip to main content

Advertisement

Log in

Genetic resources of Nile tilapia (Oreochromis niloticus Linnaeus, 1758) in its native range and aquaculture

  • ADVANCES IN CICHLID RESEARCH V
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Nile tilapia (Oreochromis niloticus) is the third-most important fish species in global aquaculture. Its farmed production has experienced a sharp rise in the last two decades, and it is among the top aquaculture species of choice for addressing the problem of food security in many developing countries. Africa holds the wealth of its natural genetic resources, however its aquaculture production is dominated by Asian countries. Native wild Nile tilapia populations in Africa have contributed to development of fast-growing aquaculture strains, and also hold strong potential for further development of new strains with desirable aquaculture traits. The genetic diversity of natural populations in Africa has not been fully characterized, and faces a serious threat of loss due to habitat degradation, pollution, unsustainable utilization of water resources and introgressive hybridization with non-native strains and congeneric species. In this review, topics pertinent to Nile tilapia native genetic resources in Africa, its aquaculture production, progress in genetic improvement of cultured strains and application, threats to native populations in the wild, and conservation strategies for sustainable utilization of natural genetic resources are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source Trewavas (1983)

Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No data available.

References

  • ADB (Asian Development Bank), 2005. An impact evaluation of development of genetically improved farmed tilapia and their dissemination in selected countries. https://www.adb.org/sites/default/files/evaluation-document/35050/files/ies-tilapia-dissemination-0.pdf

  • Adeleke, B., D. Robertson-Andersson, G. Moodley & S. Taylor, 2021. Aquaculture in Africa: a comparative review of Egypt, Nigeria, and Uganda vis-à-vis South Africa. Reviews in Fisheries Science & Aquaculture 29: 167–197.

    Article  Google Scholar 

  • Agnese, J.-F., B. Adepo-Gourene, E. K. Abban & Y. Fermon, 1997. Genetic differentiation among natural populations of the Nile tilapia Oreochromis niloticus (Teleostei, Cichlidae). Heredity 79: 88–96.

    Article  PubMed  Google Scholar 

  • Amarasinghe, U.S., 2021. GIFT transfer risk management: ecology. Ecology risk analysis and recommended risk management plan for the transfer of GIFT (Oreochromis niloticus) from Malaysia to Nigeria. WorldFish, Program Report: 2021-13, Penang, Malaysia

  • Amarasinghe, U. S. & S. S. De Silva, 1996. Impact of Oreochromis mossambicus × O. niloticus (Pisces: Cichlidae) hybridization on population reproductive potential and long-term influence on a reservoir fishery. Fisheries Management and Ecology 3: 239–249.

    Article  Google Scholar 

  • Anane-Taabeah, G., 2018. Characterization of the molecular genetic variation in wild and farmed Nile tilapia Oreochromis niloticus in Ghana for conservation and aquaculture development. Doctoral thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.

  • Anane-Taabeah, G., E. Frimpong & E. Hallerman, 2019. Aquaculture-mediated invasion of the genetically improved farmed tilapia (GIFT) into the lower Volta Basin of Ghana. Diversity 11: 188.

    Article  CAS  Google Scholar 

  • Anane-Taabeah Attu, G., E. A. Frimpong & E. M. Hallerman, 2022. Defining management units for wild Nile tilapia Oreochromis niloticus from nine river basins in Ghana. Diversity 14: 73.

    Article  Google Scholar 

  • Angienda, P. O., H. J. Lee, K. R. Elmer, R. Abila, E. N. Waindi & A. Meyer, 2011. Genetic structure and gene flow in an endangered native tilapia fish (Oreochromis esculentus) compared to invasive Nile tilapia (Oreochromis niloticus) in Yala swamp, East Africa. Conservation Genetics 12: 243–255.

    Article  Google Scholar 

  • Ansah, Y. B., E. A. Frimpong & E. M. Hallerman, 2014. Genetically-improved tilapia strains in Africa: potential benefits and negative impacts. Sustainability 6: 3697–3721.

    Article  Google Scholar 

  • Arthur, J. R., 2021. GIFT transfer risk management: pathogen. Pathogen risk analysis and recommended risk management plan for transferring GIFT (Oreochromis niloticus) from Malaysia to Nigeria. WorldFish. Program Report: 2021-17, Penang, Malaysia.

  • Avallone, A., K. L. Bartie, S.-L.C. Selly, K. Taslima, A. C. Mendoza & M. Bekaer, 2020. Local ancestry inference provides insight into tilapia breeding programmes. Scientific Reports 10: 18613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baroiller, J. F., D. Chourrout, A. Fostier & B. Jalabert, 1995. Temperature and sex chromosomes govern sex ratios of the mouth brooding Cichlid fish Oreochromis niloticus. Journal of Experimental Zoology 273: 216–223.

    Article  Google Scholar 

  • Baroiller, J. F., H. D’Cotta, E. Bezault, S. Wessels & G. Hoerstgen-Schwark, 2009. Tilapia sex determination: where temperature and genetics meet. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 153: 30–38.

    Article  CAS  Google Scholar 

  • Bartely, D. M., 2021. GIFT transfer risk management: genetics. Genetic risk analysis and recommended risk management plan for the transfer of GIFT (Oreochromis niloticus) from Malaysia to Nigeria. WorldFish, Program Report: 2021-12, Penang, Malaysia.

  • Bartely, D., K. Rana & A. Immink, 2001. The use of inter-specific hybrids in aquaculture and fisheries. Reviews in Fish Biology and Fisheries 10: 325–337.

    Article  Google Scholar 

  • Bentsen, H. B., B. Gjerde, A. E. Eknath, M. S. P. de Vera, R. R. Velasco, J. C. Danting, E. E. Dionisio, F. M. Longalong, R. A. Reyes, T. A. Abella, M. M. Tayamen & R. W. Ponzoni, 2017. Genetic improvement of farmed tilapias: response to five generations of selection for increased body weight at harvest in Oreochromis niloticus and the further impact of the project. Aquaculture 468: 206–217.

    Article  Google Scholar 

  • Bezault, E., P. Balaresque, A. Toguyeni, Y. Fermon, H. Araki, J.-F. Baroiller & X. Rognon, 2011. Spatial and temporal variation in population genetic structure of wild Nile tilapia (Oreochromis niloticus) across Africa. BMC Genetics 12: 102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blackwell, T., A. G. Ford, A. G. Ciezarek, S. J. Bradbeer, C. A. G. Juarez, A. M. Smith, B. P. Ngatunga, A. Shechonge, R. Tamatamah, G. Etherington, W. Haerty, F. Di Palma, G. F. Turner & M. J. Genner, 2020. Newly discovered cichlid fish biodiversity threatened by hybridization with non-native species. Molecular Ecology 30: 895–911.

    Article  PubMed  Google Scholar 

  • Boyd, C. E., 2004. Farm-level issues in aquaculture certification: tilapia. Report commissioned by WWF-US. http://fisheries.tamu.edu/files/2013/09/Farm-Level-Issues-in-Aquaculture-Certification-Tilapia.pdf.

  • Bradbeer, S. J., J. Harrington, H. Watson, A. Warraich, A. Shechonge, A. Smith, R. Tamatamah, B. P. Ngatunga, G. F. Turner & M. J. Genner, 2019. Limited hybridization between introduced and critically endangered indigenous tilapia fishes in northern Tanzania. Hydrobiologia 832: 257–268.

    Article  PubMed  Google Scholar 

  • Brummett, R. E., J. Lazard & J. Moehl, 2008. African aquaculture: realizing the potential. Food Policy 33: 371–385.

    Article  Google Scholar 

  • Bugenyi, F. W. B., 1997. East African and international concerns over the declining fish and general biodiversity in Lake Victoria, 17–18. In Pullin, R. S. V., C. M. V. Casal, E. K. Abban & T. M. Falk (eds), Characterization of Ghanaian Tilapia Genetic Resources for Use in Fisheries and Aquaculture. ICLARM Conf. Proc. 52, Manila, Philippines: 58.

  • CABI: Centre for Agriculture Bioscience International, 2021. Invasive Species Compendium. Oreochromis niloticus (Nile tilapia). https://www.cabi.org/isc/datasheet/72086#tosummaryOfInvasiveness.

  • Cáceres, G., M. E. López, M. I. Cádiz, G. M. Yoshida, A. Jedlicki, R. Palma-Véjares, D. Travisany, D. Díaz-Domínguez, A. Maass, J. P. Lhorente, J. Soto, D. Salas & J. M. Yáñez, 2019. Fine mapping using whole-genome sequencing confirms anti-Müllerian hormone as a major gene for sex determination in farmed Nile tilapia (Oreochromis niloticus L.). G3 Genes|Genomes|Genetics 9: 3213–3223.

    Article  PubMed  PubMed Central  Google Scholar 

  • Canonico, G. C., A. Arthington, J. K. Mccrary & M. Thieme, 2005. The effects of introduced tilapias on native biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 463–483.

    Article  Google Scholar 

  • CBD (Convention on Biological Diversity), 2011. Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization to the Convention on Biological Diversity. https://www.cbd.int/abs/doc/protocol/nagoya-protocol-en.pdf.

  • CGIAR-FISH (CGIAR-Research Program on Fish Agri-Food Systems), 2021. Annual Report 2020. Penang, Malaysia. Annual Report: FISH-2021: 19.

  • Champneys, T., M. J. Genner & C. C. Ioannou, 2021. Invasive Nile tilapia dominates a threatened indigenous tilapia in competition over shelter. Hydrobiologia 848: 3747–3762.

    Article  Google Scholar 

  • Chan, C. Y., N. Tran, S. Pethiyagoda, C. C. Crissman, T. B. Sulser & M. J. Phillips, 2019. Prospects and challenges of fish for food security in Africa. Global Food Security 20: 17–25.

    Article  Google Scholar 

  • Ciezarek, A., A. G. P. Ford, G. J. Etherington, N. Kasozi, M. Malinsky, T. K. Mehta, L. Penso-Dolfin, B. P. Ngatunga, A. Shechonge, R. Tamatamah, W. Haerty, F. Di Palma, M. J. Genner & G. F. Turner, 2022. Whole genome resequencing data enables a targeted SNP panel for conservation and aquaculture of Oreochromis cichlid fishes. Aquaculture 548: 737637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cnaani, A. & G. Hulata, 2011. Improving salinity tolerance in tilapias: past experience and future prospects. The Israeli Journal of Aquaculture- Bamidgeh 63: 533.

    Google Scholar 

  • Coleman, R. A., B. Gauffre, A. Pavlova, L. B. Beheregaray, J. Kearns, J. Lyon, M. Sasaki, R. Leblois, C. Sgro & P. Sunnucks, 2018. Artificial barriers prevent genetic recovery of small isolated populations of a low-mobility freshwater fish. Heredity 120: 515–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Amato, M. E., M. M. Esterhuyse, B. C. W. van der Waal, D. Brink & F. A. M. Volckaert, 2007. Hybridization and phylogeography of the Mozambique tilapia Oreochromis mossambicus in southern Africa evidenced by mitochondrial and microsatellite DNA genotyping. Conservation Genetics 8: 475–488.

    Article  Google Scholar 

  • Darwall, W., V. Bremerich, A. de Wever, A. I. Dell, J. Freyhof, M. O. Gessner, H.-P. Grossart, I. Harrison, K. Irvine, S. C. Jähnig, J. M. Jeschke, J. J. Lee, C. Lu, A. M. Lewandowska, M. T. Monaghan, J. C. Nejstgaard, H. Patricio, A. Schmidt-Kloiber, S. N. Stuart, M. Thieme, K. Tockner, E. Turak & O. Weyl, 2018. The Alliance for Freshwater Life: a global call to unite efforts for freshwater biodiversity science and conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 28: 1015–1022.

    Article  Google Scholar 

  • Deines, A. M., I. Bbole, C. Katongo, J. L. Feder & D. M. Lodge, 2014. Hybridisation between native Oreochromis species and introduced Nile tilapia O. niloticus in the Kafue River. Zambia. African Journal of Aquatic Science 39: 23–34.

    Article  Google Scholar 

  • Deines, A. M., M. E. Wittmann, J. M. Deines & D. M. Lodge, 2016. Tradeoffs among ecosystem services associated with global tilapia introductions. Reviews in Fisheries Science and Aquaculture 24: 178–191.

    Article  Google Scholar 

  • Diedericks, G., H. Maetens, M. Van Steenberge & J. Snoeks, 2021. Testing for hybridization between Nile tilapia (Oreochromis niloticus) and blue spotted tilapia (Oreochromis leucostictus) in the Lake Edward system. Journal of Great Lakes Research 47: 1446–1452.

    Article  Google Scholar 

  • Diwan, A. D., S. N. Harke & A. N. Panche, 2020. Cryobanking of fish and shellfish egg, embryos and larvae: an overview. Frontiers in Marine Science 7: 251.

    Article  Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z.-I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A.-H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    Article  PubMed  Google Scholar 

  • Dunz, A. R. & U. K. Schliewen, 2013. Molecular phylogeny and revised classification of the haplotilapiine cichlid fishes formerly referred to as “Tilapia.” Molecular Phylogenetics and Evolution 68: 64–80.

    Article  PubMed  Google Scholar 

  • Eknath, A. E. & B. Acosta, 1998. Genetic Improvement of Farmed Tilapia (GIFT) Project. Final Report (1988–1997). ICLARM, Manila, Philippines.

  • Eknath, A. E. & G. Hulata, 2009. Use and exchange of genetic resources of Nile tilapia (Oreochromis niloticus). Reviews in Aquaculture 1: 197–213.

    Article  Google Scholar 

  • Eknath, A. E., M. M. Tayamen, M. S. Palada-de Vera, J. C. Danting, R. A. Reyes, E. E. Dionisio, J. B. Capili, H. L. Bolivar, T. A. Abella, A. V. Circa, H. B. Bentsen, B. Gjerde, T. Gjedrem & R. S. V. Pullin, 1993. Genetic improvement of farmed tilapias: the growth performance of eight strains of Oreochromis niloticus tested in different farm environments. Aquaculture 111: 171–188.

    Article  Google Scholar 

  • El-Sayed, A. F. M., 2006. Tilapia Culture. CABI Publishing, Cambridge.

    Book  Google Scholar 

  • El-Sayed, A. F. M., 2017. Egypt’s success with tilapia a blueprint for all Africa. Global Aquaculture Alliance. https://www.aquaculturealliance.org/advocate/egypt-tilapia-blueprint-africa/.

  • El-Sayed, A. F. M., 2020. Chapter 3—Tilapia distribution, transfers and introductions. 33–45. In Tilapia Culture (Second Edition). Academic Press: 358.

  • El-Zaeem, S. Y., M. M. M. Ahmed, M. E. S. Salama & D. M. F. Darwesh, 2012. Production of salinity tolerant tilapia through interspecific hybridization between Nile tilapia (Oreochromis niloticus) and red tilapia (Oreochromis sp.). African Journal of Agricultural Research 7: 2955–2961.

    Google Scholar 

  • Fagbemi, M., A. Nambyl, L. Pigneur, A. André, N. Smitz, V. Gennotte, J. R. Michaux, C. Mélard, P. A. Lalèyè & C. Rougeot, 2021. Genetic structure of wild and farmed Nile tilapia (Oreochromis niloticus) populations in Benin based on genome-wide SNP technology. Aquaculture 535: 736432.

    Article  CAS  Google Scholar 

  • FAO, 2006–2021. Oreochromis niloticus. Cultured Aquatic Species Information Programme. Text by Rakocy, J. E. Fisheries and Aquaculture Division. FAO, Rome. Updated 2006-05-19. https://www.fao.org/fishery/en/culturedspecies/oreochromis_niloticus/en.

  • FAO, 2008. Aquaculture development. 3. Genetic resource management. FAO Technical Guidelines for Responsible Fisheries No. 5, Suppl. 3. FAO, Rome: 125.

  • FAO, 2018. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals. FAO, Rome.

    Google Scholar 

  • FAO, 2019a. The State of the World’s Biodiversity for Food and Agriculture. In Bélanger, J. & D. Pilling (eds), FAO Commission on Genetic Resources for Food and Agriculture Assessments. FAO, Rome: 572.

    Google Scholar 

  • FAO, 2019b. The State of the World’s Aquatic Genetic Resources for Food and Agriculture. FAO Commission on Genetic Resources for Food and Agriculture assessments. FAO, Rome.

  • FAO, 2020a. The State of World Fisheries and Aquaculture 2020—Sustainability in Action, FAO, Rome:

    Google Scholar 

  • FAO, 2020b. FAO Yearbook. Fishery and Aquaculture Statistics-2018. FAO, Rome.

  • FAO/UNEP, 1981. Conservation of the genetic resources of fish: Problems and recommendations. Report of the Expert Consultation on the genetic resources of fish. Rome, 9–13 June 1980. FAO Fish.Tech.Pap. 217. FAO, Rome: 43.

  • Faulks, L. & Ö. Östman, 2016. Genetic diversity and hybridisation between native and introduced salmonidae fishes in a Swedish alpine lake. PLoS ONE 11: e0152732.

    Article  PubMed  PubMed Central  Google Scholar 

  • Froese, R. & D. Pauly (eds), 2021. FishBase. https://www.fishbase.se/Summary/SpeciesSummary.php?ID=2andAT=Nile+tilapia.

  • Fuentes-Silva, C., G. M. Soto-Zarazúa, I. Torres-Pacheco & A. Flores-Rangel, 2013. Male tilapia production techniques: a mini-review. African Journal of Biotechnology 12: 5496–5502.

    Google Scholar 

  • Geist, J., 2021. Green or red: challenges for fish and freshwater biodiversity conservation related to hydropower. Aquatic Conservation: Marine and Freshwater Ecosystems 31: 1551–1558.

    Article  Google Scholar 

  • Geist, J. & S. J. Hawkins, 2016. Habitat recovery and restoration in aquatic ecosystems: current progress and future challenges. Aquatic Conservation: Marine and Freshwater Ecosystems 26: 942–962.

    Article  Google Scholar 

  • Gjedrem, T. & N. Robinson, 2014. Advances by selective breeding for aquatic species: a review. Agricultural Sciences 5: 1152–1158.

    Article  Google Scholar 

  • Goni, M. I., J. Auta, S. A. Abdullahi & B. Ibrahim, 2020. Production of all-male tilapia through hybridization between Oreochromis niloticus and Tilapia zillii. International Journal of Fisheries and Aquatic Studies 8: 103–107.

    Google Scholar 

  • Goudswaard, P. C., F. Witte & E. F. B. Katunzi, 2002. The tilapiine fish stock of Lake Victoria before and after the Nile perch upsurge. Journal of Fish Biology 60: 838–856.

    Article  Google Scholar 

  • Grant, P. R. & B. R. Grant, 2019. Hybridization increases population variation during adaptive radiation. Proceedings of the National Academy of Sciences 116: 23216–23224.

    Article  CAS  Google Scholar 

  • Hallerman, E. 2008. Application of risk analysis to genetic issues in aquaculture. In Bondad-Reantaso, M. G., J. R. Arthur & R. P. Subasinghe (eds), Understanding and applying risk analysis in aquaculture. FAO Fisheries and Aquaculture Technical Paper. No. 519.. FAO, Rome: 47–66.

  • Hallerman, E. & A. W. Hilsdorf, 2014. Conservation genetics of tilapias: seeking to define appropriate units for management. The Israeli Journal of Aquaculture- Bamidgeh 66: 1043.

    Article  Google Scholar 

  • Harache, Y., 2002. Development and diversification issues in aquaculture. A historical and dynamic view of fish culture diversification. In Paquotte, P., C. Mariojouls & J. Young (eds), Seafood Market Studies for the Introduction of New Aquaculture Products CIHEAM, Zaragoza: 15–23.

    Google Scholar 

  • Hassanien, H. A. & J. Gilbey, 2005. Genetic diversity and differentiation of Nile tilapia (Oreochromis niloticus) revealed by DNA microsatellites. Aquaculture Research 36: 1450–1457.

    Article  CAS  Google Scholar 

  • Hassanien, H. A., M. Elnady, A. Obeida & H. Itriby, 2004. Genetic diversity of Nile tilapia populations revealed by randomly amplified polymorphic DNA (RAPD). Aquaculture Research 35: 587–593.

    Article  CAS  Google Scholar 

  • Hiemstra, S. J., T. van der Lende & H. Woelders, 2006. The potential of cryopreservation and reproductive technologies for animal genetic resources conservation strategies. In Ruane, J. & A. Sonnino (eds), The Role of Biotechnology in Exploring and Protecting Agricultural Genetic Resources. FAO, Rome.

    Google Scholar 

  • Hulata, G., G. Wohlfarth & S. Rothbard, 1983. Progeny-testing selection of tilapia broodstocks producing all-male hybrid progenies – Preliminary results. Aquaculture 33: 263–268.

  • Hulsey, C. D. & F. J. Garcia-de-Leon, 2013. Introgressive hybridization in a trophically polymorphic cichlid. Ecology and Evolution 3: 4536–4547.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibrahim, N. A., M. Y. Abou Zaid, H. L. Khaw, G. O. El-Naggar & R. W. Ponzoni, 2013. Relative performance of two Nile tilapia (Oreochromis niloticus Linnaeus) strains in Egypt: the Abbassa selection line and the Kafr El Sheikh commercial strain. Aquaculture Research 44: 508–517.

    Article  Google Scholar 

  • Ibrahim, N. A., A. M. Nasr-Allah & H. Charo-Karisa, 2019. Assessment of the impact of dissemination of genetically improved Abbassa Nile tilapia strain (GIANT-G9) versus commercial strains in some Egyptian governorates. Aquaculture Research 50: 2951–2959.

    Article  CAS  Google Scholar 

  • Jalabert, B., P. Kammacher & P. Lessent, 1971. Sex determination in Tilapia macrochir × Tilapia nilotica hybrids. Investigations on the sex ratio in the first generation hybrids × parent crossing. Annales De Biologie Animale Biochimie Biophysique 11: 155–165.

    Article  Google Scholar 

  • Kajungiro, R. A., C. Palaiokostas, F. A. L. Pinto, A. J. Mmochi, M. Mtolera, R. D. Houston & D. J. de Koning, 2019. Population structure and genetic diversity of Nile tilapia (Oreochromis niloticus) strains cultured in Tanzania. Frontiers in Genetics 10: 1269.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kariuki, J., P. D. Tibihika, M. Curto, E. Alemayehu, G. Winkler & H. Meimberg, 2021. Application of microsatellite genotyping by amplicon sequencing for delimitation of African tilapiine species relevant for aquaculture. Aquaculture 537: 736501.

    Article  CAS  Google Scholar 

  • Lahav, M. & E. Lahav, 1990. The development of all-male tilapia hybrids in Nir David. The Israeli Journal of Aquaculture—Bamidgeh 42: 58–61.

    Google Scholar 

  • Lazard, J. & M. Legendre, 1996. The spontaneous reproduction of tilapia: an opportunity or a handicap for the development of African aquaculture? 77–91. In Pullin, R.S.V., J. Lazard, M. Legendre, J.B. Amon Kothias, & D. Pauly (eds), The Third International Symposium on Tilapia in Aquaculture. ICLARM Conf. Proc. 41. Manila, Philippines: 575.

  • Lima, L. B., F. J. M. Oliveira, H. C. Giacomini & D. P. Lima-Junior, 2018. Expansion of aquaculture parks and the increasing risk of non-native species invasions in Brazil. Reviews in Aquaculture 10: 111–122.

    Article  Google Scholar 

  • Lind, C. E., R. E. Brummett & R. W. Ponzoni, 2012a. Exploitation and conservation of fish genetic resources in Africa: issues and priorities for aquaculture development and research. Reviews in Aquaculture 4: 125–141.

    Article  Google Scholar 

  • Lind, C. E., C. Ponzoni, N. Nguyen & H. Khaw, 2012b. Selective breeding in fish and conservation of genetic resources for aquaculture. Reproduction in Domestic Animals 47: 255–263.

    Article  PubMed  Google Scholar 

  • Lind, C. E., S. K. Agyakwah, F. Y. Attipoe, C. Nugent, R. P. M. A. Crooijmans & A. Toguyeni, 2019. Genetic diversity of Nile tilapia (Oreochromis niloticus) throughout West Africa. Scientific Reports 9: 16767.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lovshin, L. L., 1982. Tilapia hybridization. 279–308. In Pullin R. S. V. & R. H. Lowe-McConnell (eds), The Biology and Culture of Tilapias. ICLARM Conference Proceedings 7. International Center for Living Aquatic Resources Management. Manila, Philippines: 432.

  • Macaranas, J. M., N. Taniguchi, M. J. R. Pante, J. B. Capili & R. S. V. Pullin, 1986. Electrophoretic evidence for extensive hybrid gene introgression into commercial Oreochromis niloticus (L.) stocks in the Philippines. Aquaculture Research 17: 249–258.

    Article  CAS  Google Scholar 

  • Machena, C. & J. Moehl, 2001. Sub-Saharan African aquaculture: regional summary. 341–355. In Subasinghe, R. P., P. Bueno, M. J. Phillips, C. Hough, S. E. McGladdery & J. R. Arthur (eds), Aquaculture in the Third Millennium. Technical Proceedings of the Conference on Aquaculture in the Third Millennium, Bangkok, Thailand, 20–25 February 2000. NACA, FAO, Rome.

  • Mapenzi, L. L. & A. Mmochi, 2016. Role of salinity on growth performance of Oreochromis niloticus ♀ and Oreochromis urolepis urolepis ♂ hybrids. Journal of Aquaculture Research and Development 7: 431.

    Google Scholar 

  • Marengoni, N. G., Y. Onoue & T. Oyama, 1998. All-male tilapia hybrids of two strains of Oreochromis niloticus. Journal of the World Aquaculture Society 29: 108–113.

    Article  Google Scholar 

  • Martínez-Páramo, S., Á. Horváth, C. Labbé, T. Zhang, V. Robles, P. Herráez, M. Suquet, S. Adams, A. Viveiros, T. R. Tiersch & E. Cabrita, 2017. Cryobanking of aquatic species. Aquaculture 472: 156–177.

    Article  PubMed  Google Scholar 

  • Mbiru, M., S. M. Limbu, S. W. Chenyambuga, H. A. Lamtane, R. Tamatamah, N. A. Madalla & A. W. Mwandya, 2016. Comparative performance of mixed-sex and hormonal-sex-reversed Nile tilapia Oreochromis niloticus and hybrids (Oreochromis niloticus × Oreochromis urolepis hornorum) cultured in concrete tanks. Aquaculture International 24: 557–566.

    Article  CAS  Google Scholar 

  • Megbowon, I. & T. O. Mojekwu, 2014. Tilapia sex reversal using methyl testosterone (MT) and its effect on fish, man and environment. Biotechnology 13: 213–216.

    Article  CAS  Google Scholar 

  • Meier, J. I., R. B. Stelkens, D. A. Joyce, S. Mwaiko, N. Phiri, U. K. Schliewen, O. M. Selz, C. E. Wagner, C. Katongo & O. Seehausen, 2019. The coincidence of ecological opportunity with hybridization explains rapid adaptive radiation in Lake Mweru cichlid fishes. Nature Communications 10: 5391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milstein, A., 2016. Tilapia co-culture in Israeli fishponds and reservoirs—Chapter 14. 237–245. In Perschbacher, P. W. & R. R. Stickney (eds), Tilapia in intensive co‐culture. Wiley-Blackwell, Ames: 368.

  • Moses, M., M. S. P. Mtolera, L. J. Chauka, F. A. L. Pinto, D. J. de Koning, R. D. Houston & C. Palaiokostas, 2019. Characterizing the genetic structure of introduced Nile tilapia (Oreochromis niloticus) strains in Tanzania using double digest RAD sequencing. Aquaculture International 28: 477–492.

    Article  Google Scholar 

  • Moses, M., J. L. Chauka, D. J. Koning, C. Palaiokostas & M. S. P. Mtolera, 2021. Growth performance of five different strains of Nile tilapia (Oreochromis niloticus) introduced to Tanzania reared in fresh and brackish waters. Scientific Reports 11: 11147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostofa Kamal, A. H. M. & G. C. Mair, 2005. Salinity tolerance in superior genotypes of tilapia, Oreochromis niloticus, Oreochromis mossambicus and their hybrids. Aquaculture 247: 189–201.

    Article  Google Scholar 

  • Mtaki, K., S. M. Limbu, A. J. Mmochi & M. S. P. Mtolera, 2021. Hybrids production as a potential method to control prolific breeding in tilapia and adaptation to aquaculture climate-induced drought. Aquaculture and Fisheries 2468–550X.

  • Nash, C. E., 2011. The History of Aquaculture. Wiley-Blackwell, Ames.

    Book  Google Scholar 

  • Nasr-Allah, A., M. Dickson, D. A. Al-Kenawy, S. E. Ali & H. Charo-Karisa, 2021. Better management practices for tilapia hatcheries in Egypt. CGIAR Research Program on Fish Agri-Food Systems. Manual: FISH-2021-04. Penang, Malaysia.

  • Nayfa, M. G., D. B. Jones, J. Benzie, D. R. Jerry & K. R. Zenger, 2020. Comparing genomic signatures of selection between the Abbassa strain and eight wild populations of Nile tilapia (Oreochromis niloticus) in Egypt. Frontiers in Genetics 11: 567969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ndiwa, T. C., D. W. Nyingi & J.-F. Agnese, 2014. An important natural genetic resource of Oreochromis niloticus (Linnaeus, 1758) threatened by aquaculture activities in Loboi drainage, Kenya. PLoS ONE 9: e106972.

    Article  PubMed  PubMed Central  Google Scholar 

  • Norris, A. T., D. G. Bradley & E. P. Cunningham, 1999. Microsatellite genetic variation between and within farmed and wild Atlantic salmon (Salmo salar) populations. Aquaculture 180: 247–264.

    Article  Google Scholar 

  • Nyingi, D. W. & J.-F. Agnese, 2007. Recent introgressive hybridization revealed by exclusive mtDNA transfer from Oreochromis leucostictus (Trewavas, 1933) to Oreochromis niloticus (Linnaeus, 1758) in Lake Baringo, Kenya. Journal of Fish Biology 70: 148–154.

    Article  CAS  Google Scholar 

  • Nyingi, D. W., L. De Vos, R. Aman & J.-F. Agnese, 2009. Genetic characterization of an unknown and endangered native population of the Nile tilapia Oreochromis niloticus (Linnaeus, 1758) (Cichlidae; Teleostei) in the Loboi Swamp (Kenya). Aquaculture 297: 57–63.

    Article  CAS  Google Scholar 

  • Nyinondi, C. S., M. S. P. Mtolera, A. J. Mmochi, F. A. L. Pinto, R. D. Houston, D. J. de Koning & C. Palaiokostas, 2020. Assessing the genetic diversity of farmed and wild Rufiji tilapia (Oreochromis urolepis urolepis) populations using ddRAD sequencing. Ecology and Evolution 10: 10044–10056.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogutu-Ohwayo, R., 1990. The decline of the native fishes of lakes Victoria and Kyoga (East Africa) and the impact of introduced species, especially the Nile perch, Lates niloticus, and the Nile tilapia, Oreochromis niloticus. Environmental Biology of Fishes 27: 81–96.

    Article  Google Scholar 

  • Outa, N. O., E. O. Yongo, J. L. A. Keyombe, E. O. Ogello & W. D. Namwaya, 2020. A review on the status of some major fish species in Lake Victoria and possible conservation strategies. Lakes and Reservoirs: Research and Management 25: 105–111.

    Article  Google Scholar 

  • Pinheiro, A. P. B., R. M. C. Melo, D. F. Teixeira, J. L. O. Birindelli, D. C. Carvalho & E. Rizzo, 2019. Integrative approach detects natural hybridization of sympatric Lambaris species and emergence of infertile hybrids. Scientific Reports 9: 4333.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ponzoni, R. W., N. H. Nguyen & H. L. Khaw, 2009. Genetic improvement programs for aquaculture species in developing countries: prospects and challenges. Proceedings of the Association for Advancement of Animal Breeding and Genetics 18: 342–349.

    Google Scholar 

  • Ponzoni, R. W., N. H. Nguyen, H. L. Khaw & C. E. Lind, 2010. Genetic improvement of farmed aquatic animals at the WorldFish Center. The World Fish Center. http://pubs.iclarm.net/resource_centre/WF_2729.pdf.

  • Ponzoni, R. W., N. H. Nguyen, H. L. Khaw, A. Hamzah, K. R. Abu Bakar & H. Y. Yee, 2011. Genetic improvement of Nile tilapia (Oreochromis niloticus) with special reference to the work conducted by the WorldFish Center with the GIFT strain. Reviews in Aquaculture 3: 27–41.

    Article  Google Scholar 

  • Popovic, I. & L. Bernatchez, 2021. Uncovering endemism in a lake of invasive species introgression. Molecular Ecology 30: 880–883.

    Article  PubMed  Google Scholar 

  • Pruginin, Y., 1967. Report to the government of Uganda on the experimental fish culture project in Uganda 1965–1966. Rep. FAO ⁄UNDP (TA) 2446:16.

  • Pullin, R. S. V., 1997. International concerns on fish biodiversity and genetic resources management. 1–2. In Pullin, R. S. V., C. M. V. Casal, E. K. Abban & T. M. Falk (eds), Characterization of Ghanaian tilapia genetic resources for use in fisheries and aquaculture. ICLARM Conf. Proc. 52. Manila, Philippines: 58.

  • Pullin, R. S. V. & J. B. Capili, 1988. Genetic improvement of tilapias: problems and prospects. 259–266. In Pullin R. S. V., T. Bhukaswan, K. Toguthai & J. L. Maclean (eds), The Second International Symposium on Tilapia Aquaculture. ICLARM Conference Proceedings 15. Department of Fisheries, Bangkok, Thailand, and International Center for Living Aquatic Resources Management. Manila, Philippines: 623.

  • Pullin, R. S. V. & R. H. Lowe-McComell (eds), 1982. The Biology and Culture of Tilapias. ICLARM Conference Proceedings 7. International Center for Living Aquatic Resources Management. Manila, Philippines: 432.

  • Reid, A. J., A. K. Carlson, I. F. Creed, E. J. Eliason, P. A. Gell, P. T. J. Johnson, K. A. Kidd, T. J. MacCormack, J. D. Olden, S. J. Ormerod, J. P. Smol, W. W. Taylor, K. Tockner, J. C. Vermaire, D. Dudgeon & S. J. Cooke, 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews 94: 849–873.

    Article  PubMed  Google Scholar 

  • Rezk, M. A., R. W. Ponzoni, H. L. Khaw, E. Kamel, T. Dawood & G. John, 2009. Selective breeding for increased body weight in a synthetic breed of Egyptian Nile tilapia, Oreochromis niloticus: response to selection and genetic parameters. Aquaculture 293: 187–194.

    Article  Google Scholar 

  • Rivers, N., J. Daly & P. Temple-Smith, 2020. New directions in assisted breeding techniques for fish conservation. Reproduction, Fertility and Development 32: 807–821.

    Article  PubMed  Google Scholar 

  • Roderick, E., 2004. Monosex tilapia production. Global Aquaculture Alliance. https://www.aquaculturealliance.org/advocate/monosex-tilapia-production/.

  • Rognon, X. & R. Guyomard, 2003. Large extent of mitochondrial DNA transfer from Oreochromis aureus to O. niloticus in West Africa. Molecular Ecology 12: 435–445.

    Article  CAS  PubMed  Google Scholar 

  • Routray, P., 2020. Cryopreservation and storage of oocytes, embryos and embryonic cells of fish. In Betsy, J. & S. Kumar (eds), Cryopreservation of Fish Gametes. Springer, Singapore: 313–336.

    Chapter  Google Scholar 

  • Sadek, S., 2011. An overview on desert aquaculture in Egypt. 141–158. In Crespi, V. & A. Lovatelli (eds), Aquaculture in desert and arid lands: development constraints and opportunities. FAO Technical Workshop. 6–9 July 2010, Hermosillo, Mexico. FAO Fisheries and Aquaculture Proceedings No. 20. FAO, Rome.

  • Seyoum, S. & I. Kornfield, 1992. Identification of the subspecies of Oreochromis niloticus (Pisces: Cichlidae) using restriction endonuclease analysis of mitochondrial DNA. Aquaculture 102: 29–42.

    Article  CAS  Google Scholar 

  • Shechonge, A., B. P. Ngatunga, R. Tamatamah, S. J. Bradbeer, J. Harrington, A. G. P. Ford, G. F. Turner & M. J. Genner, 2018. Losing cichlid fish biodiversity: genetic and morphological homogenization of tilapia following colonization by introduced species. Conservation Genetics 19: 1199–1209.

    Article  PubMed  Google Scholar 

  • Shechonge, A., B. P. Ngatunga, R. Tamatamah, S. J. Bradbeer, E. Sweke, A. Smith, G. F. Turner & M. J. Genner, 2019a. Population genetic evidence for a unique resource of Nile tilapia in Lake Tanganyika, East Africa. Environmental Biology of Fishes 102: 1107–1117.

    Article  Google Scholar 

  • Shechonge, A., B. P. Ngatunga, S. J. Bradbeer, J. J. Day, J. J. Freer, A. G. P. Ford, J. Kihedu, T. Richmond, S. Mzighani, A. M. Smith, E. A. Sweke, R. Tamatamah, A. M. Tyers, G. F. Turner & M. J. Genner, 2019b. Widespread colonization of Tanzanian catchments by introduced Oreochromis tilapia fishes: the legacy from decades of deliberate introduction. Hydrobiologia 832: 235–253.

    Article  PubMed  Google Scholar 

  • Sukmanomon, S., W. Kamonrat, S. Poompuang, T. T. T. Nguyen, D. M. Bartley, B. May & U. Na-Nakorn, 2012. Genetic changes, intra- and inter-specific introgression in farmed Nile tilapia (Oreochromis niloticus) in Thailand. Aquaculture 324–325: 44–54.

    Article  Google Scholar 

  • Sun, Y.-L., D.-N. Jiang, S. Zeng, C.-J. Hu, K. Ye, C. Yang, S.-J. Yang, M.-H. Li & D.-S. Wang, 2014. Screening and characterization of sex-linked DNA markers and marker-assisted selection in the Nile tilapia (Oreochromis niloticus). Aquaculture 433: 19–27.

    Article  CAS  Google Scholar 

  • Teletchea, F. & P. Fontaine, 2014. Levels of domestication in fish: implications for the sustainable future of aquaculture. Fish and Fisheries 15: 181–195.

    Article  Google Scholar 

  • Temesgen, M., A. Getahun & B. Lemma, 2019. Livelihood functions of capture fisheries in sub-Saharan Africa: food security, nutritional, and economic implications. Reviews in Fisheries Science & Aquaculture 27: 215–225.

    Article  Google Scholar 

  • Tesfaye, G., M. Curto, P. Meulenbroek, G. K. Englmaier, P. D. Tibihika, E. Alemayehu, A. Getahun & H. Meimberg, 2021. Genetic diversity of Nile tilapia (Oreochromis niloticus) populations in Ethiopia: insights from nuclear DNA microsatellites and implications for conservation. BMC Ecology and Evolution 21: 113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tessema, M., A. Müller-Belecke & G. Hörstgen-Schwark, 2006. Effect of rearing temperatures on the sex ratios of Oreochromis niloticus populations. Aquaculture 258: 270–277.

    Article  Google Scholar 

  • Tibihika, P. D., M. Curto, E. Alemayehu, H. Waidbacher, C. Masembe, P. Akoll & H. Meimberg, 2020. Molecular genetic diversity and differentiation of Nile tilapia (Oreochromis niloticus, L. 1758) in East African natural and stocked populations. BMC Evolutionary Biology 20: 16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todesco, M., M. A. Pascual, G. L. Owens, K. L. Ostevik, B. T. Moyers, S. Hübner, S. M. Heredia, M. A. Hahn, C. Caseys, D. G. Bock & L. H. Rieseberg, 2016. Hybridization and extinction. Evolutionary Applications 9: 892–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trewavas, E., 1983. Tilapiine Fishes of the Genera Sarotherodon, Oreochromis, and Danakilia. British Museum of Natural History, London.

    Book  Google Scholar 

  • Trinh, T. Q., S. K. Agyakwah, H. L. Khaw, J. A. H. Benzie & F. K. Y. Attipoe, 2021. Performance evaluation of Nile tilapia (Oreochromis niloticus) improved strains in Ghana. Aquaculture 530: 735938.

    Article  CAS  Google Scholar 

  • Twongo, T., 1995. Impact of fish species introductions on the tilapias of Lakes Victoria and Kyoga. In Pitcher, T. J. & P. J. B. Hart (eds), The Impact of Species Changes in African Lakes. Chapman and Hall Fish and Fisheries Series 18. Springer, Dordrecht.

  • Villegas, C. T., 1990. Growth and survival of Oreochromis niloticus, O. mossambicus and their F1 hybrids at various salinities 507–510. In Hirano, R. & I. Hanyu (eds), The Second Asian Fisheries Forum: Proceedings of the Second Asian Fisheries Forum, Tokyo, Japan, 17–22 April 1989. Asian Fisheries Society. Manila, Philippines.

  • Wenne, R., 2017. Single nucleotide polymorphism markers with applications in aquaculture and assessment of its impact on natural populations. Aquatic Living Resources. https://doi.org/10.1051/alr/2017043.

    Article  Google Scholar 

  • Wohlfarth, G. W., 1994. The unexploited potential of tilapia hybrids in aquaculture. Aquaculture and Fisheries Management 25: 781–788.

    Google Scholar 

  • WorldFish, 2016. The GIFT that keeps giving. https://www.worldfishcenter.org/pages/gift/.

  • WorldFish Center, 2006. Code of practice and manual of procedures for the introduction of GIFT to Africa. 12. https://www.worldfishcenter.org/publication/code-practice-and-manual-procedures-introduction-gift-africa.

  • WorldFish Center, 2007. Policy on the transfer of genetically improved farmed tilapia (GIFT) from Asia to Africa by the WorldFish Center. 3. https://digitalarchive.worldfishcenter.org/handle/20.500.12348/1721.

  • Yáñez, J. M., R. Joshi & G. M. Yoshida, 2020. Genomics to accelerate genetic improvement in tilapia. Animal Genetics 51: 658–674.

    Article  PubMed  Google Scholar 

  • Yoshida, K., R. Miyagi, S. Mori, A. Takahashi, T. Makino, A. Toyoda, A. Fujiyama & J. Kitano, 2016. Whole-genome sequencing reveals small genomic regions of introgression in an introduced crater lake population of three spine stickleback. Ecology and Evolution 6: 2190–2204.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, J., X. Wen, C. You, S. Wang, C. Chen, D. R. Tocher & Y. Li, 2021. Comparison of the growth performance and long-chain polyunsaturated fatty acids (LC-PUFA) biosynthetic ability of red tilapia (Oreochromis mossambicus ♀ × O. niloticus ♂) fed fish oil or vegetable oil diet at different salinities. Aquaculture 542: 73689.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank two anonymous reviewers for their constructive comments which have improved the manuscript.

Funding

This work was supported by China Agriculture Research System of MOF and MARA (CARS-46).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Temesgen Tola Geletu or Jinliang Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: S. Koblmüller, R. C. Albertson, M. J. Genner, K. M. Sefc & T. Takahashi / Advances in Cichlid Research V: Behavior, Ecology and Evolutionary Biology.

Supplementary Information

Below is the link to the electronic supplementary material.

10750_2022_4989_MOESM1_ESM.xlsx

Supplementary file1 Supplementary information: SI. 1 Capture and aquaculture production of Nile tilapia in actual figures are available from the corresponding author on reasonable request. (XLSX 15 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geletu, T.T., Zhao, J. Genetic resources of Nile tilapia (Oreochromis niloticus Linnaeus, 1758) in its native range and aquaculture. Hydrobiologia 850, 2425–2445 (2023). https://doi.org/10.1007/s10750-022-04989-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04989-4

Keywords

Navigation