Skip to main content

Advertisement

Log in

Intraspecific variation in Potamogeton illinoensis life history and seed germination has implications for restoration in eutrophic lakes

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Potamogeton illinoensis is a North American macrophyte, commonly the focus of management, but limited knowledge of its life history hampers conservation and restoration efforts. We conducted greenhouse and growth chamber experiments and field monitoring to understand intraspecific variation in P. illinoensis reproduction and germination traits, monitoring one restored and three natural populations in Central Florida, USA. We assessed reproductive phenology, seed banks in the fall and spring, and germination across different light, temperature, sediment, and ethylene treatments. Flowering and seeding occurred spring through fall, with the highest seed bank densities in fall and minimal seeds detected in late spring. Seeds germinated at the highest percentages in light from 20 to 25°C, and at higher percentages in highly organic field-collected soil. Seeds treated with ethephon, which emits ethylene (commonly produced by submerged organic sediments), germinated at nearly twice the percentage as those exposed to water alone. While these reproductive and germination patterns were true across populations, there was variation among populations in seed bank densities, the most favorable germination temperatures, and overall germination percentages, indicating population differences contribute to reproductive performance. These results suggest restoration via seeds will be limited in conditions with low light or in unconsolidated sediments where burial is likely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ailstock, M. S., D. J. Shafer & A. D. Magoun, 2010a. Protocols for use of Potamogeton perfoliatus and Ruppia maritima seeds in large-scale Restoration. Restoration Ecology 18: 560–573.

    Article  Google Scholar 

  • Ailstock, M. S., D. J. Shafer & A. D. Magoun, 2010b. Effects of planting depth, sediment grain size, and nutrients on Ruppia maritima and Potamogeton perfoliatus seedling emergence and growth. Restoration Ecology 18: 574–583.

    Article  Google Scholar 

  • Al-Gharaibeh, M. M., H. R. Hamasha, S. Lachmuth & I. Hensen, 2017. Local adaptation to different phytogeographic regions: habitat-related variations in seed germination in response to temperature and salinity for two medicinal Salvia species from Jordan. Plant Species Biology 32: 25–35.

    Article  Google Scholar 

  • Armellina, A. & C. Bezic, 1996. Propagation and mechanical control of Potamogeton illinoensis Morong in irrigation canals in Argentina. Journal of Aquatic Plant Management 34: 12–14.

    Google Scholar 

  • Baskin, C. C. & J. M. Baskin, 2001. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination, Academic Press, San Diego:

    Google Scholar 

  • Baskin, J. & C. Baskin, 2004. A classification system for seed dormancy. Seed Science Research 14: 1–16.

  • Baskin, C. C., J. M. Baskin, E. W. Chester & M. Smith, 2003. Ethylene as a possible cue for seed germination of Schoenoplectus hallii (Cyperaceae), a rare summer annual of occasionally flooded sites. American Journal of Botany 90: 620–627.

    Article  PubMed  Google Scholar 

  • Berec, L., E. Angulo & F. Courchamp, 2007. Multiple Allee effects and population management. Trends in Ecology and Evolution 22: 185–191.

    Article  PubMed  Google Scholar 

  • Berg, C. O., 1949. Limnological relations of insects to plants of the genus Potamogeton. Transactions of the American Microscopical Society 68: 279–291.

    Article  Google Scholar 

  • Boedeltje, G., G. N. J. Ter Heerdt & J. P. Bakker, 2002. Applying the seedling emergence method under waterlogged conditions to detect the seed bank of aquatic plants in submerged sediments. Aquatic Botany 72: 121–128.

    Article  Google Scholar 

  • Bowes, G. & M. E. Salvucci, 1989. Plasticity in the photosynthetic carbon metabolism of submersed aquatic macrophytes. Aquatic Botany 34: 233–266.

    Article  CAS  Google Scholar 

  • Clugston, J. P., 1959. Lake Apopka, Florida: a changing lake and its vegetation. Quarterly Journal of the Florida Academy of Sciences 26: 168–174.

    Google Scholar 

  • Colas, B., F. Kirchner, M. Riba, I. Olivieri, A. Mignot, E. Imbert, C. Beltrame, D. Carbonell & H. Fréville, 2008. Restoration demography: a 10-year demographic comparison between introduced and natural populations of endemic Centaurea corymbosa (Asteraceae). Journal of Applied Ecology 45: 1468–1476.

    Article  Google Scholar 

  • Cook, C., 1988. Wind pollination in aquatic angiosperms. Missouri Botanical Garden Press 75: 768–777.

    Article  Google Scholar 

  • Cooke, G., E. B. Welch, S. A. Peterson & S. A. Nichols, 2005. Restoration and Management of Lakes and Reservoirs, CRC Press, Boca Raton:

    Google Scholar 

  • Coveney, M. F., 2016. Water quality changes in Lake Apopka, Florida, and the St. Johns River Water Management District’s restoration program.

  • Dahlquist, R. M., T. S. Prather & J. J. Stapleton, 2007. Time and temperature requirements for weed seed thermal death. Weed Science 55: 619–625.

    Article  CAS  Google Scholar 

  • Davies, B. E., 1974. Loss-on-ignition as an estimate of soil organic matter. Soil Science Society of America Journal 38: 150–151.

    Article  Google Scholar 

  • Davis, H. G., C. M. Taylor, J. G. Lambrinos & D. R. Strong, 2004. Pollen limitation causes an Allee effect in a wind-pollinated invasive grass (Spartina alterniflora). Proceedings of the National Academy of Sciences 101: 13804–13807.

    Article  CAS  Google Scholar 

  • Dick, G. O., R. M. Smart & L. L. Dodd, 2013. Propagation and establishment of native plants for vegetative restoration of aquatic ecosystems, Engineer Research and Development Center, Lewisville Aquatic Ecosystem Research Facility, Lewisville:

    Book  Google Scholar 

  • Dierick, J., T. T. H. Phan, Q. D. Luong & L. Triest, 2021. Persistent clones and local seed recruitment contribute to the resilience of Enhalus acoroides populations under disturbance. Frontiers in Plant Science 12: 1–12.

    Article  Google Scholar 

  • Else, M. J. & D. N. Riemer, 1984. Factors affecting germination of seeds of fragrant waterlily. Journal of Aquatic Plant Management 22: 22–25.

    Google Scholar 

  • Engelhardt, K. A. M., M. W. Lloyd & M. C. Neel, 2014. Effects of genetic diversity on conservation and restoration potential at individual, population, and regional scales. Biological Conservation 179: 6–16.

    Article  Google Scholar 

  • Espeland, E. K., N. C. Emery, K. L. Mercer, S. A. Woolbright, K. M. Kettenring, P. Gepts & J. R. Etterson, 2017. Evolution of plant materials for ecological restoration: insights from the applied and basic literature. Journal of Applied Ecology 54: 102–115.

    Article  Google Scholar 

  • Gettys, L. A., 2019. Breaking bad: native aquatic plants gone rogue and the invasive species that inspire them. HortTechnology 29: 559–566.

    Article  Google Scholar 

  • Godfrey, R. K. & J. W. Wooten, 1979. Aquatic and Wetland Plants of the Southeastern United States, University of Georgia Press, Athens:

    Google Scholar 

  • Godefroid, S., C. Piazza, G. Rossi, S. Buord, A. D. Stevens, R. Aguraiuja, C. Cowell, C. W. Weekley, G. Vogg, J. M. Iriondo, I. Johnson, B. Dixon, D. Gordon, S. Magnanon, B. Valentin, K. Bjureke, R. Koopman, M. Vicens, M. Virevaire & T. Vanderborght, 2011. How successful are plant species reintroductions? Biological Conservation 144: 672–682.

    Article  Google Scholar 

  • Gosselin, J. R., W. T. Haller & L. A. Gettys, 2018a. Seasonal and environmental factors affecting growth of Illinois pondweed. Journal of Aquatic Plant Management 56: 101–106.

    Google Scholar 

  • Gosselin, J. R., W. T. Haller, L. Y. N. A. Gettys, T. Griffin & E. S. Crawford, 2018b. Effects of substrate nutrients on growth of three submersed aquatic plants. Journal of Aquatic Plant Management 56: 39–46.

    Google Scholar 

  • Gu, B. & M. V. Hoyer, 2005. Community structure and environmental conditions in Florida shallow lakes dominated by submerged aquatic vegetation. Lake and Reservoir Management 21: 403–410.

    Article  CAS  Google Scholar 

  • Harwell, M. C. & R. J. Orth, 2002. Long-distance dispersal potential in a marine macrophyte. Ecology 83: 3319–3330.

  • Haynes, R. R., 1974. A revision of North American Potamogeton subsection pusilli (Potamogetonaceae). Rhodora 76: 564–649.

    Google Scholar 

  • Hofstra, D., J. Schoelynck, J. Ferrell, J. Coetzee, M. de Winton, T. O. Bickel, P. Champion, J. Madsen, E. S. Bakker, S. Hilt, F. Matheson, M. Netherland & E. M. Gross, 2020. On the move: new insights on the ecology and management of native and alien macrophytes. Aquatic Botany 162: 103190.

    Article  Google Scholar 

  • Hoyer, M. V., D. E. Canfield, C. A. Horsburg & K. Brown, 1996. Florida Freshwater Plants: A Handbook of Common Aquatic Plants in Florida Lakes, University of Florida Institute of Food and Agricultural Sciences, Gainesville:

    Google Scholar 

  • Jarvis, J. C. & K. A. Moore, 2008. Influence of environmental factors on Vallisneria americana seed germination. Aquatic Botany 88: 283–294.

    Article  CAS  Google Scholar 

  • Jeppesen, E., M. Søndergaard & K. Christoffersen, 1998. The Structuring Role of Submerged Macrophytes in Lakes, Springer, New York:

    Book  Google Scholar 

  • Jeppesen, E., M. Søndergaard, T. L. Lauridsen, T. A. Davidson, Z. Liu, N. Mazzeo, C. Trochine, K. Özkan, H. S. Jensen, D. Trolle, F. Starling, X. Lazzaro, L. S. Johansson, R. Bjerring, L. Liboriussen, S. E. Larsen, F. Landkildehus, S. Egemose & M. Meerhoff, 2012. Biomanipulation as a restoration tool to combat eutrophication: recent advances and future challenges. Advances in Ecological Research 47: 411–488.

    Article  Google Scholar 

  • Jiménez-Alfaro, B., F. A. O. Silveira, A. Fidelis, P. Poschlod & L. E. Commander, 2016. Seed germination traits can contribute better to plant community ecology. Journal of Vegetation Science 27: 637–645.

    Article  Google Scholar 

  • Jordan A. 2021. Moore’s creek submersed aquatic vegetation restoration. https://www.fishamerica.org/wp-content/uploads/2021/04/Final-report-FAF-20-19-Moores-Creek-FL.pdf. Accessed 20 July 2021.

  • Kauth, P. J. & P. D. Biber, 2014. Testa imposed dormancy in Vallisneria americana seeds from the Mississippi Gulf Coast. Journal of the Torrey Botanical Society 141: 80–90.

    Article  Google Scholar 

  • Ke, X. & W. Li, 2006. Germination requirement of Vallisneria natans seeds: implications for restoration in Chinese lakes. Hydrobiologia 559: 357–362.

    Article  Google Scholar 

  • Kettenring, K. M., 2016. Viability, dormancy, germination, and intraspecific variation of Bolboschoenus maritimus (alkali bulrush) seeds. Aquatic Botany 134: 26–30.

    Article  Google Scholar 

  • Koch, E. W., M. S. Ailstock, D. M. Booth, D. J. Shafer & A. D. Magoun, 2010. The role of currents and waves in the dispersal of submersed angiosperm seeds and seedlings. Restoration Ecology 18: 584–595.

    Article  Google Scholar 

  • Krauss, S. L., L. Hermanutz, S. D. Hopper & D. J. Coates, 2007. Population-size effects on seeds and seedlings from fragmented eucalypt populations: implications for seed sourcing for ecological restoration. Australian Journal of Botany 55: 390–399.

    Article  Google Scholar 

  • Lagler, K., 1943. Food habits and economic relations of the turtles of Michigan with special reference to fish management. The American Midland Naturalist 29: 257–312.

    Article  Google Scholar 

  • LAKEWATCH, 2021. Florida LAKEWATCH Plant Reports. https://lakewatch.ifas.ufl.edu/datareports/.

  • Li, W., 2014. Environmental opportunities and constraints in the reproduction and dispersal of aquatic plants. Aquatic Botany 118: 62–70.

    Article  Google Scholar 

  • Lokker, C., L. Lovett-Doust & J. Lovett-Doust, 1997. Seed output and the seed bank in Vallisneria americana (Hydrocharitaceae). American Journal of Botany 84: 1420–1428.

    Article  CAS  PubMed  Google Scholar 

  • Looby, A., L. K. Reynolds, C. R. Adams & C. W. Martin, 2021a. Submerged aquatic vegetation patch size affects fish communities in a turbid-algal lake. Frontiers in Conservation Science 2: 1–8.

    Article  Google Scholar 

  • Looby, A., L. K. Reynolds, C. R. Adams, S. J. Walsh & C. W. Martin, 2021b. Submerged aquatic vegetation habitat use of age-0 Florida bass Micropterus floridanus. Environmental Biology of Fishes 104: 947–958.

    Article  Google Scholar 

  • Madsen, J. D., P. A. Chambers, W. F. James, E. W. Koch & D. F. Westlake, 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71–84.

    Article  Google Scholar 

  • McNaugton, S. T., 1966. Ecotype function in the Typha community-type. Ecological Monographs 36: 297–325.

    Article  Google Scholar 

  • Moeller, R. E., R. G. Wetzel & C. W. Osenberg, 1998. Concordance of phosphorus limitations in Lakes: bacterioplankton, phytoplankton, epiphytes-snail consumers, and rooted macrophytes. In Jeppesen, E., M. Sondergaard, M. Sondergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes Ecol. Studies, Vol. 131. Springer, New York: 318–325.

    Chapter  Google Scholar 

  • Moreira, B., C. Tavsanoglu & J. G. Pausas, 2012. Local versus regional intraspecific variability in regeneration traits. Oecologia 168: 671–677.

    Article  CAS  PubMed  Google Scholar 

  • Muenscher, W. C., 1936. The germination of seeds of Potamogeton. Annals of Botany 50: 805–821.

    Article  Google Scholar 

  • Naylor, R. E. L., 1993. The effect of parent plant nutrition on seed size, viability, and vigour and on germination of wheat and triticale at different temperatures. Annals of Applied Botany 123: 379–390.

    Article  Google Scholar 

  • O’Hare, M. T., F. C. Aguiar, T. Asaeda, E. S. Bakker, P. A. Chambers, J. S. Clayton, A. Elger, T. M. Ferreira, E. M. Gross, I. D. M. Gunn, A. M. Gurnell, S. Hellsten, D. E. Hofstra, W. Li, S. Mohr, S. Puijalon, K. Szoszkiewicz, N. J. Willby & K. A. Wood, 2018. Plants in aquatic ecosystems: current trends and future directions. Hydrobiologia 812: 1–11.

    Article  Google Scholar 

  • Olesen, B. & K. Sandjensen, 1994. Patch dynamics of eelgrass Zostera marina. Marine Ecology Progress Series 106: 147–156.

    Article  Google Scholar 

  • Orth, R. J., M. C. Harwell, E. M. Bailey, A. Bartholomew, J. T. Jawad, A. V. Lombana, K. A. Moore, J. M. Rhode & H. E. Woods, 2000. A review of issues in seagrass seed dormancy and germination: implications for conservation and restoration. Marine Ecology-Progress Series 200: 277–288.

    Article  Google Scholar 

  • Parker, V. T. & M. A. Leck, 1985. Relationships of seed banks to plant distribution patterns in a freshwater tidal wetland. American Journal of Botany 72: 161–174.

    Article  Google Scholar 

  • Phillips, R. C., W. S. Grant & C. P. McRoy, 1983. Reproductive strategies of eelgrass (Zostera marina L.). Aquatic Botany 16: 1–20.

    Article  Google Scholar 

  • Reynolds, L. K., M. Waycott & K. J. McGlathery, 2013. Restoration recovers population structure and landscape genetic connectivity in a dispersal-limited ecosystem. Ecology 101: 1288–1297.

    Article  Google Scholar 

  • Reynolds, L. K., C. B. Rohal, W. A. Scheffel, C. R. Adams, C. W. Martin & J. Slater, 2021. Submerged aquatic vegetation species and populations within species respond differently to environmental stressors common in restorations. Environmental Management 68: 477–490.

    Article  PubMed  Google Scholar 

  • Rohal, C. B., L. K. Reynolds, C. R. Adams, C. W. Martin, E. Latimer, S. J. Walsh & J. Slater, 2021. Biological and practical tradeoffs in planting techniques for submerged aquatic vegetation. Aquatic Botany 170: 103347.

    Article  Google Scholar 

  • Rosbakh, S. & P. Poschlod, 2019. Broad seed germination niche as an adaptation to heterogeneous aquatic habit—a case study of four Potamogeton species. Inland Water Biology 12: 68–73.

    Article  Google Scholar 

  • Roy, N. N. & H. L. Everett, 1963. Seed production, fertility levels, and cold test germination in corn. Crop Science 3: 273–275.

    Article  Google Scholar 

  • Slagle, Z. J. & M. S. Allen, 2018. Should we plant macrophytes? Restored habitat use by the fish community of Lake Apopka, Florida. Lake and Reservoir Management 34: 296–305.

    Article  CAS  Google Scholar 

  • Smiley, P. C. & E. D. Dibble, 2006. Evaluating the feasibility of planting aquatic plants in shallow lakes in the Mississippi Delta. Journal of Aquatic Plant Management 44: 73–80.

    Google Scholar 

  • Smits, A. J. M., G. H. W. Schmitz, G. Van der Velde & L. A. C. J. Voesenek, 1995. Influence of ethanol and ethylene on the seed germination of three nymphaeid water plants. Freshwater Biology 34: 39–46.

    Article  Google Scholar 

  • Smith, K. A. & S. W. F. Restall, 1971. The occurrence of ethylene in anaerobic soil. Journal of Soil Science 22: 430–443.

    Article  CAS  Google Scholar 

  • Stubler, A. D., L. J. Jackson, B. T. Furman & B. J. Peterson, 2017. Seed production patterns in Zostera marina: effects of patch size and landscape configuration. Estuaries and Coasts 40: 564–572.

    Article  Google Scholar 

  • Su, H., T. Zhu, X. Bai, L. Ni, P. Xie & X. Zhang, 2018. Seed germination indicates adaptive transgenerational plasticity in a submerged macrophyte. Frontiers in Plant Science 871: 1–13.

    Google Scholar 

  • Sytsma, M. D., 2008. Introduction: workshop on submersed aquatic plant research priorities. Journal of Aquatic Plant Management 46: 1–7.

    Google Scholar 

  • Thompson, K. & J. P. Grime, 1979. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. The Journal of Ecology 67: 893–921.

    Article  Google Scholar 

  • USF Water Institute, 2021. University of South Florida Water Atlas. https://wateratlas.usf.edu/.

  • Vanderstukken, M., N. Mazzeo, W. van Colen, S. A. J. Declerck & K. Muylaert, 2011. Biological control of phytoplankton by the subtropical submerged macrophytes Egeria densa and Potamogeton illinoensis: a mesocosm study. Freshwater Biology 56: 1837–1849.

    Article  CAS  Google Scholar 

  • Verhofstad, M. J. J. M., M. M. Alirangues Núñez, E. P. Reichman, E. van Donk, L. P. M. Lamers & E. S. Bakker, 2017. Mass development of monospecific submerged macrophyte vegetation after the restoration of shallow lakes: roles of light, sediment nutrient levels, and propagule density. Aquatic Botany 141: 29–38.

    Article  Google Scholar 

  • Warner, H. L. & A. C. Leopold, 1969. Ethylene evolution from 2-chloroethylphosphonic acid. Plant Physiology 44: 156–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westcott, K., T. H. Whillans & M. G. Fox, 1997. Viability and abundance of seeds of submerged macrophytes in the sediment of disturbed and reference shoreline marshes in Lake Ontario. Canadian Journal of Botany 75: 451–456.

    Article  Google Scholar 

  • Xiao, C., X. Wang, J. Xia & G. Liu, 2010. The effect of temperature, water level and burial depth on seed germination of Myriophyllum spicatum and Potamogeton malaianus. Aquatic Botany 92: 28–32.

    Article  Google Scholar 

  • Yin, L., R. Zhang, Z. Xie, C. Wang & W. Li, 2013. The effect of temperature, substrate, light, oxygen availability and burial depth on Ottelia alismoides seed germination. Aquatic Botany 111: 50–53.

    Article  Google Scholar 

  • Zhang, Y., E. Jeppesen, X. Liu, B. Qin, K. Shi, Y. Zhou, S. M. Thomaz & J. Deng, 2017. Global loss of aquatic vegetation in lakes. Earth-Science Reviews 173: 259–265.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the St. Johns River Water Management District grant 31945. We thank W. Scheffel, A. Looby, R. Goebel, C. Nicholson, N. Medina Irizarry, A. Matys, and E. Murphy for assistance with experiment implementation.

Funding

This study was funded by St. Johns River Water Management District Grant # 31945.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by CR and ST, CR completed the analysis and wrote the first draft of the manuscript. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Laura K. Reynolds.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. This manuscript has not been published elsewhere, nor is it currently being reviewed in another journal.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Handling editor: Chris Joyce

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4272 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohal, C.B., Adams, C.R., Martin, C.W. et al. Intraspecific variation in Potamogeton illinoensis life history and seed germination has implications for restoration in eutrophic lakes. Hydrobiologia 849, 3481–3500 (2022). https://doi.org/10.1007/s10750-022-04947-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04947-0

Keywords

Navigation