Skip to main content
Log in

Flow-mediated growth of an aquatic herbivore

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Herbivorous macroinvertebrates make up a large fraction of secondary production in wetlands, but little is known about how water flow affects herbivorous macroinvertebrate production. Reintroducing measurable water flow (1–5 cm/s) to the oligotrophic (phosphorus-limited) Everglades has the potential to improve herbivorous macroinvertebrate production by providing a constant low supply of phosphorus (P) to periphyton and improving food quality. This study investigated potential effects of flow-mediated nutrient loading on growth rates of herbivorous grazers, juvenile apple snails (Pomacea maculata). Periphyton was grown on standard substrates, within a landscape-scale flow addition experiment, in two sloughs that received elevated velocities (3–5 cm/s) and two control sloughs. The flowing sloughs produced periphyton with greater biomass, higher concentrations of nutrients, and lower C:P ratios. Snails, in a laboratory setting, gained more than 3.7-fold greater total mass when fed periphyton from flowing sloughs than snails fed periphyton from control sloughs. Water column nutrients were slightly elevated in flowing sloughs, but the amount could not fully explain differences in periphyton nutrients or snail growth. Increasing flow above background conditions improved food quality, which subsequently increased growth rates. Restoring flow has the potential to increase nutrient accessibility that could enhance food webs, but additional study will be needed to determine whether increased growth rates translate into increased standing stocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Datasets from this study are available from the corresponding author on reasonable request.

Code availability

Code was written in R v3.6.2 using libraries “car‚” “dplyr‚” “Hmisc‚” and “ggplot.” Code used for this study are available from the corresponding author on reasonable request.

References

  • Aich, S., C. W. McVoy, T. W. Dreschel & F. Santamaria, 2013. Estimating soil subsidence and carbon loss in the Everglades agricultural area, Florida using geospatial techniques. Agriculture, Ecosystems & Environment 171: 124–133.

    Article  Google Scholar 

  • Allan, J. D. & M. M. Castillo, 2007. Stream Ecology: Structure and Function of Running Waters, Chapman and Hall, London:

    Book  Google Scholar 

  • Arnon, S., A. I. Packman, C. G. Peterson & K. A. Gray, 2007. Effects of overlying velocity on periphyton structure and denitrification. Journal of Geophysical Research 112: 112–122.

    Article  Google Scholar 

  • Baird, R. B., A. D. Eaton & E. W. Rice, 2017. Standard Methods for the Examination of Water and Wastewater, Vol. 23. American Public Health Association, Washington, DC:

    Google Scholar 

  • Batzer, D. P., 2013. The seemingly intractable ecological responses of invertebrates in North American wetlands: a review. Wetlands 33: 1–15.

    Article  Google Scholar 

  • Bernhardt, E. S., M. A. Palmer, J. D. Allan, G. Alexander, K. Barnas, S. Brooks, J. Carr, S. Clayton, C. Dahm, J. Follstad-Shah, D. Galat, S. Gloss, P. Goodwin, D. Hart, B. Hassett, R. Jenkinson, S. Katz, G. M. Kondolf, P. S. Lake, R. Lave, J. L. Meyer, T. K. O’Donnell, L. Pagano, B. Powell & E. Sudduth, 2005. Synthesizing U.S. river restoration efforts. Science 308: 636–637.

    Article  CAS  PubMed  Google Scholar 

  • Borchardt, M. A., 1994. Effects of flowing water on nitrogen- and phosphorus-limited photosynthesis and optimum N:P ratios by Spirogyra fluviatilis (Charophyceae). Journal of Phycology 30: 418–430.

    Article  CAS  Google Scholar 

  • Boyle, R. A., N. J. Dorn & M. I. Cook, 2014. Importance of crayfish prey to nesting white ibis (Eudocimus albus). Waterbirds 37: 19–29.

    Article  Google Scholar 

  • Bransky, J. W. & N. J. Dorn, 2013. Prey use of wetland benthivorous sunfishes: ontogenetic, interspecific and seasonal variation. Environmental Biology of Fishes 96: 1329–1340.

    Article  Google Scholar 

  • Burks, R. L., J. Bernatis, J. E. Byers, J. Carter, C. W. Martin, W. G. McDowell & J. Van Dyke, 2017. Identity, reproductive potential, distribution, ecology and management of invasive Pomacea maculata in the southern United States. pp. 293–333, In Joshi, R. C., R. H. Cowie & L. S. Sebastian (eds), Biology and Management of Invasive Apple Snails. Philippine Rice Research Institute, Maligaya: 406 pp.

  • Cattau, C. E., J. Martin & W. M. Kitchens, 2010. Effects of an exotic prey species on a native specialist: example of the snail kite. Biological Conservation 143: 513–520.

    Article  Google Scholar 

  • Chaffin, J. D., T. B. Bridgeman, D. L. Bade & C. N. Mobilian, 2014. Summer phytoplankton nutrient limitation in Maumee Bay of Lake Erie during high-flow and low-flow years. Journal of Great Lakes Research 40: 524–531.

    Article  CAS  Google Scholar 

  • Darby, P. C., R. E. Bennetts, J. D. Croop, P. L. Valentine-Darby & W. M. Kitchens, 1999. A comparison of sampling techniques for quantifying abundance of the Florida apple snail (Pomacea paludosa Say). Journal of Molluscan Studies 65: 195–208.

    Article  Google Scholar 

  • Davidson, A. T., 2016. Predator impacts of crayfish on apple snails (Pomacea paludosa and P. maculata). Master’s Thesis, Department of Biological Sciences, Florida Atlantic University, Davie, FL.

  • Davidson, A. T. & N. J. Dorn, 2018. System productivity alters predator sorting of a size-structured mixed prey community. Oecologia 186: 1101–1111.

    Article  PubMed  Google Scholar 

  • Davis, S. M. & J. C. Ogden, 1994. Everglades: The Ecosystem and Its Restoration, St. Lucie Press, Delray Beach, FL:

    Book  Google Scholar 

  • Davis, S. M., L. H. Gunderson, W. A. Park, J. R. Richardson & J. E. Mattson, 1994. Landscape dimension, composition and function in a changing Everglades ecosystem. In Davis, S. M. & J. C. Ogden (eds), Everglades: Ecosystem and Its Restoration St. Lucie Press, Delray Beach, FL: 419–444.

    Chapter  Google Scholar 

  • Delany, D. F. & C. L. Abercrombie, 1986. American alligator food habits in northcentral Florida. The Journal of Wildlife Management 50: 348–353.

    Article  Google Scholar 

  • Dorn, N. J. & M. I. Cook, 2015. Hydrological disturbance diminishes predator control in wetlands. Ecology 96: 2984–2993.

    Article  PubMed  Google Scholar 

  • Dorn, N. J. & M. Hafsadi, 2016. Native crayfish consume more non-native than native apple snails. Biological Invasions 18: 159–167.

    Article  Google Scholar 

  • Dorn, N. J., J. C. Trexler & E. E. Gaiser, 2006. Exploring the role of large predators in marsh food webs: evidence for a behaviorally mediated trophic cascade. Hydrobiologia 569: 375–386.

    Article  Google Scholar 

  • Elser, J. J., W. F. Fagan, R. F. Denno, D. R. Dobberfuhl, A. Folarin, A. Huberty, S. Interlandi, S. S. Kilham, E. McCauley, K. L. Schulz, E. H. Siemann & R. W. Sterner, 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature 408: 578–580.

    Article  CAS  PubMed  Google Scholar 

  • Fink, P. & E. Von Elert, 2006. Physiological responses to stoichiometric constraints: nutrient limitation a compensatory feeding in a freshwater snail. Oikos 115: 484–494.

    Article  CAS  Google Scholar 

  • Fisher, M. M., S. J. Miller, A. D. Chapman & L. W. Keenan, 2009. Phytoplankton dynamics in a chain of subtropical blackwater lakes: the Upper St. Johns River, Florida, USA. Lake and Reservoir Management 25: 73–86.

    Article  Google Scholar 

  • Frost, P. C. & J. J. Elser, 2002. Growth responses of littoral mayflies to the phosphorus content of their food. Ecology Letters 5: 232–240.

    Article  Google Scholar 

  • Gaiser, E. E., J. C. Trexler, J. H. Richards, D. L. Childers, D. Lee, A. L. Edwards, L. J. Scinto, K. Jayachandran, G. B. Noe & D. D. Jones, 2005. Cascading ecological effects of low-level phosphorus enrichment in the Florida Everglades. Journal of Environmental Quality 34: 717–723.

    Article  CAS  PubMed  Google Scholar 

  • Gaiser, E. E., D. L. Childers, R. D. Jones, J. H. Richards, L. J. Scinto & J. C. Trexler, 2006. Periphyton responses to eutrophication in the Florida Everglades: cross-system patterns of structural and compositional change. Limnology and Oceanography 51: 617–630.

    Article  CAS  Google Scholar 

  • Gaiser, E. E., P. V. McCormick, S. E. Hagerthey & A. D. Gottlieb, 2011. Landscape patterns of periphyton in the Florida Everglades. Critical Reviews in Environmental Science and Technology 41: 92–120.

    Article  Google Scholar 

  • Geddes, P. & J. C. Trexler, 2003. Uncoupling of omnivore-mediated positive and negative effects on periphyton mats. Oecologia 136: 585–595.

    Article  PubMed  Google Scholar 

  • Ghosh, M. & J. P. Gaur, 1998. Current velocity and the establishment of stream algal periphyton communities. Aquatic Botany 60: 1–10.

    Article  Google Scholar 

  • Grimm, N. & S. Fisher, 1989. Stability of periphyton and macroinvertebrates to disturbance by flash floods in a desert stream. Journal of the North American Benthological Society 8: 293–307.

    Article  Google Scholar 

  • Hagerthey, S. E. & W. C. Kerfoot, 1998. Groundwater flow influences the biomass and nutrient ratios of epibenthic algae in a north temperate seepage lake. Limnology and Oceanography 43: 1227–1242.

    Article  CAS  Google Scholar 

  • Hagerthey, S. E., S. Newman, K. Rutchey, E. P. Smith & J. Godin, 2008. Multiple regime shifts in a subtropical peatland: community-specific thresholds to eutrophication. Ecological Monographs 78: 547–565.

    Article  Google Scholar 

  • Iwata, T., S. Nakano & M. Murakami, 2003. Stream meanders increase insectivorous bird abundance in riparian deciduous forests. Ecography 26: 325–337.

    Article  Google Scholar 

  • Jaffe, M., 2014. The maintenance and consequences of a low quality diet in Poecilia latipinna. Florida International University, Department of Biological Sciences – Undergraduate Honors Theses. 57. https://digitalcommons.fiu.edu/bio_honors/57.

  • Jørgensen, B. B. & D. J. Des Marais, 1990. The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat. Limnology and Oceanography 35: 1343–1355.

    Article  PubMed  Google Scholar 

  • King, R. S. & C. J. Richardson, 2007. Subsidy-stress response of macroinvertebrate community biomass to a phosphorus gradient in an oligotrophic wetland ecosystem. Journal of the North American Benthological Society 26(3): 491–508.

    Article  Google Scholar 

  • Kleeberg, A., M. Hupfer & G. Gust, 2008. Quantification of phosphorus entrainment in a lowland river by in situ and laboratory resuspension experiments. Aquatic Sciences 70: 87–99.

    Article  CAS  Google Scholar 

  • Larsen, L. G., S. Newman, C. Saunders & J. W. Harvey, 2017. Complex networks of functional connectivity in a wetland reconnected to is floodplain. Water Resources Research 53: 6089–6108.

    Article  Google Scholar 

  • Liston, S. E., S. Newman & J. C. Trexler, 2008. Macroinvertebrate community response to eutrophication in an oligotrophic wetland: an in situ mesocosm experiment. Wetlands 28: 686–694.

    Article  Google Scholar 

  • Marshall, F. E., G. L. Wingard & P. A. Pitts, 2009. Simulation of historic hydrology and salinity in Everglades National Park: coupling paleoecologic assemblage data with regression models. Estuaries and Coasts 32: 37–53.

    Article  Google Scholar 

  • McCormick, P. V. & R. J. Stevenson, 1998. Periphyton as a tool for ecological assessment and management in the Florida Everglades. Journal of Phycology 34: 726–733.

    Article  Google Scholar 

  • McCormick, P. V., R. B. E. Shuford III., J. G. Backus & W. C. Kennedy, 1998. Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, Florida, U.S.A. Hydrobiologia 362: 185–208.

    Article  Google Scholar 

  • McCormick, P. V., S. Newman, S. L. Miao, D. Gawlik, D. Marley, K. R. Reddy & T. D. Fontaine, 2001. Effects of anthropogenic phosphorus inputs on the Everglades. In Porter, J. W. & K. G. Porter (eds), The Everglades, Florida Bay, and Coral Reefs of the Florida keys: An Ecosystem Sourcebook CRC Press, Boca Raton, FL: 83–126.

    Google Scholar 

  • McCormick, P. V., R. B. E. Shuford III. & P. S. Rawlik, 2004. Changes in macroinvertebrate community structure and function along a phosphorus gradient in the Florida Everglades. Hydrobiologia 529: 113–132.

    Article  Google Scholar 

  • Noe, G. B., D. L. Childers & R. D. Jones, 2001. Phosphorus biogeochemistry and the impact of phosphorus enrichment: why is the everglades so unique? Ecosystems 4: 603–624.

    Article  CAS  Google Scholar 

  • Oksanen, L., S. D. Fretwell, J. Aruda & P. Niemelä, 1981. Exploitation ecosystems in gradients of primary productivity. American Naturalist 118: 240–261.

    Article  Google Scholar 

  • Poff, N. L., J. D. Allen, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. The natural flow regime: a paradigm for river conservation and restoration. BioScience 47: 769–784.

    Article  Google Scholar 

  • Poff, N. L., B. D. Richter, A. H. Arthington, S. E. Bunn, R. J. Naiman, E. Kendy, M. Acreman, C. Apse, B. P. Bledsoe, M. C. Freeman, J. Henriksen, R. B. Jacobson, J. G. Kennen, D. M. Merritt, J. H. O’keeffe, J. D. Olden, K. Rogers, R. E. Tharme & A. Warner, 2010. The ecological limits of hydrological alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biology 55: 147–170.

    Article  Google Scholar 

  • Ramírez, A. & C. M. Pringle, 2006. Fast growth and turnover of chironomid assemblages in response to stream phosphorus levels in a tropical lowland landscape. Limnology and Oceanography 51: 189–196.

    Article  Google Scholar 

  • Rawlings, T. A., K. A. Hayes, R. H. Cowie & T. M. Collins, 2007. The identity, distribution, and impacts of non-native apple snails in the continental United States. BMC Evolutionary Biology 7: 97.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruehl, C. B. & J. C. Trexler, 2011. Comparison of snail density, standing stock, and body size between Caribbean karst wetlands and other freshwater ecosystems. Hydrobiologia 665: 1–13.

    Article  CAS  Google Scholar 

  • Ruehl, C. B. & J. C. Trexler, 2015. Reciprocal transplants reveals tradeoff of resource quality and predation risk in the field. Oecologia 179: 117–127.

    Article  PubMed  Google Scholar 

  • Sargeant, B. L., E. E. Gaiser & J. C. Trexler, 2010. Biotic and abiotic determinants of intermediate-consumer trophic diversity in the Florida Everglades. Marine and Freshwater Research 61: 22–22.

    Article  CAS  Google Scholar 

  • Sargeant, B. L., E. E. Gaiser & J. C. Trexler, 2011. Indirect and direct controls of macroinvertebrates and small fish by abiotic factors and trophic interactions in the Florida Everglades. Freshwater Biology 56: 2334–2346.

    Article  Google Scholar 

  • Saunders, C. J. & S. Newman, 2017. Triggers guiding year-round DPM operations of the S152, based on statistical analysis of canal water TP variation. Appendix B in USACE Jacksonville District, Final Supplemental EA and Finding of no Significant Impact – Installation, Testing and Monitoring of a Physical Model for the WCA3 Decompartmentalization and Sheetflow Enhancement Project Phase 2.SFWMD. 2018. Central Everglades Planning Project. South Florida Water Management District, West Palm Beach, FL.

  • Sharfstein, B. & A. D. Steinman, 2001. Growth and survival of the Florida apple snail (Pomacea paludosa) fed 3 naturally occurring macrophyte assemblages. Society for Freshwater Science 20: 84–95.

    Google Scholar 

  • Sklar, F. H., M. J. Chimney, S. Newman, P. McCormick, D. Gawlik, S. Miao, C. McVoy, W. Said, J. Newman, C. Coronado, G. Crozier, M. Korvela & K. Rutchey, 2005. The ecological-societal underpinnings of Everglades restoration. The Ecological Society of America: Frontiers in Ecology and the Environment 3: 161–169.

    Google Scholar 

  • Sklar, F. H., S. Newman, L. Cadavid, M. I. Cook, C. Coronado, C. Zweig, W. Wilcox & M. C. Brown, 2020. The subtropical Everglades, Florida, USA. In Goldstein, M. A. & D. A. DellaSala (eds), Encyclopedia of the World’s Biomes, Vol. 4. Elsevier, Amsterdam: 195–210.

    Chapter  Google Scholar 

  • Stelzer, R. S. & G. A. Lamberti, 2002. Ecological stoichiometry in running waters: periphyton chemical composition and snail growth. Ecology 83: 1039–1051.

    Article  Google Scholar 

  • Sterner, R. W., 1993. Daphnia growth on varying quality of Scenedesmus: mineral limitation of zooplankton. Ecology 74: 2351–2360.

    Article  Google Scholar 

  • Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere, Princeton University Press, Princeton:

    Google Scholar 

  • Sterner, R. W. & D. O. Hessen, 1994. Algal nutrient limitation and the nutrition of aquatic herbivores. Annual Review of Ecology and Systematics 25: 1–29.

    Article  Google Scholar 

  • Thomas, S., E. E. Gaiser, M. Gantar & L. J. Scinto, 2006. Quantifying the responses of calcareous periphyton crusts to rehydration: a microcosm study (Florida Everglades). Aquatic Botany 84: 317–323.

    Article  Google Scholar 

  • Tonkin, J. D., J. D. Olden, D. M. Merritt, L. V. Reynolds, J. S. Rogosch & D. A. Lytle, 2021. Designing flow regimes to support entire river ecosystems. Frontiers in Ecology and the Environment 19: 326–333.

    Article  Google Scholar 

  • Trexler, J. C. & W. F. Loftus, 2016. Invertebrates of the Florida Everglades: An International Perspective on Their Ecology, Springer, New York:

    Book  Google Scholar 

  • Trexler, J. C., E. E. Gaiser, J. S. Kominoski & J. Sanchez, 2015. The role of periphyton mats in structuring consumer structure and function in calcareous wetlands: lessons learned from the Everglades. In Entry, J. A., A. D. Gottlieb, K. Jayachandrahan & A. Ogram (eds), Microbiology of the Everglades Ecosystem. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Turner, A. M., J. C. Trexler, C. F. Jordan, S. J. Slack, P. Geddes, J. H. Chick & W. F. Loftus, 1999. Targeting ecosystem features for conservation: standing crops in the Florida Everglades. Conservation Biology 13: 898–911.

    Article  Google Scholar 

  • U.S. Army Corps of Engineers, 1999. Central and Southern Florida Project Comprehensive Review Study: Final Integrated Feasibility Report and Programmatic Environmental Impact Statement, US Army Corps of Engineers, Jacksonville, FL:

    Google Scholar 

  • Vaithiyanathan, P. & C. J. Richardson, 1998. Biogeochemical characteristics of the Everglades sloughs. Journal of Environmental Quality 27: 1439–1450.

    Article  CAS  Google Scholar 

  • Valentine-Darby, P. L., S. E. Kell & P. C. Darby, 2015. Predation on Florida apple snails (Pomacea paludosa) by native and non-native aquatic fauna, and predator-prey size relationships. Florida Scientist 78: 47–56.

    Google Scholar 

  • Wallace, J. B. & J. R. Webster, 1996. The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology 41: 115–139.

    Article  CAS  PubMed  Google Scholar 

  • Warton, D. I. & F. K. C. Hui, 2011. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92: 3–10.

    Article  PubMed  Google Scholar 

  • Zinn, T. L. & S. R. Humphrey, 1981. Seasonal food resources and prey selection of the southeastern brown bat (Myotis austroriparius) in Florida. Florida Scientist 44: 81–90.

    Google Scholar 

Download references

Acknowledgements

I would like to thank Nick Gadbois and Lisa Jackson for their assistance in the field. Funding for the work was provided by an agreement between the South Florida Water Management District and Florida Atlantic University (#4600003624 to N. J. Dorn); the FIU Center for Aquatic Chemistry and Environment Nutrient Analysis Core Facility for running the nutrient analysis on the periphyton samples; and the SFWMD chemistry lab for analyzing the water quality samples. This is contribution #1458 of the Freshwater Resources Division of the Institute of Environment at Florida International University.

Funding

Funding for the work was provided by an agreement between the South Florida Water Management District and Florida Atlantic University (#4600003624 to N. J. Dorn).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by CH. The first draft of the manuscript was written by CH, but all authors commented and edited the manuscript throughout the process. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Chris Hansen.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Handling Editor: Sally A. Entrekin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansen, C., Newman, S., Saunders, C.J. et al. Flow-mediated growth of an aquatic herbivore. Hydrobiologia 849, 3161–3173 (2022). https://doi.org/10.1007/s10750-022-04923-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04923-8

Keywords

Navigation