Skip to main content

Advertisement

Log in

A Simulation of Historic Hydrology and Salinity in Everglades National Park: Coupling Paleoecologic Assemblage Data with Regression Models

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Restoration of Florida’s Everglades requires scientifically supportable hydrologic targets. This study establishes a restoration baseline by developing a method to simulate hydrologic and salinity conditions prior to anthropogenic changes. The method couples paleoecologic data on long-term historic ecosystem conditions with statistical models derived from observed meteorologic and hydrologic data that provide seasonal and annual variation. Results indicate that pre-drainage freshwater levels and hydroperiods in major sloughs of the Everglades were about 0.15 m higher and two to four times greater, respectively, on average compared to today’s values. Pre-drainage freshwater delivered to the wetlands and estuaries is estimated to be 2.5 to four times greater than the modern-day flow, and the largest deficit is during the dry season. In Florida Bay, salinity has increased between 5.3 and 20.1 with the largest differences in the areas near freshwater outflow points. These results suggest that additional freshwater flows to the Everglades are needed for restoration of the freshwater marshes of the Everglades and estuarine environment of Florida Bay, particularly near the end of the dry season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Appleby, P.G., and F. Olfield. 1978. The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5: 1–8. doi:10.1016/S0341-8162(78)80002-2.

    Article  Google Scholar 

  • Appleby, P.G. 1997. Sediment records of fallout radionuclides and their application to studies of sediment–water interactions. Water, Air and Soil Pollution 99: 573–586.

    Google Scholar 

  • Basso, R., R. Schultz. 2003. Long-term variation in rainfall and its effect on Peace River flow in West-Central Florida. Brooksville, Florida: Hydrologic Evaluation Section, Southwest Florida Water Management District.

    Google Scholar 

  • Boyer, J.N., J.W. Fourqurean, and R.D. Jones. 1999. Seasonal and long-term trends in the water quality of Florida Bay (1989–1997). Estuaries 22: 417–430. doi:10.2307/1353208.

    Article  CAS  Google Scholar 

  • Brewster-Wingard, G.L., and S.E. Ishman. 1999. Historical trends in salinity and substrate in central and northern Florida Bay: a paleoecological reconstruction using modern analogue data. Estuaries 22: 369–383. doi:10.2307/1353205.

    Article  Google Scholar 

  • Brewster-Wingard, G.L., J.R. Stone, and C.W. Holmes. 2001. Molluscan faunal distribution in Florida Bay, past and present: an integration of down-core and modern data. Bulletins of American Paleontology 361: 199–231. [Available at: http://sofia.usgs.gov/ publications/papers/mollusc_distribution/index.html].

    Google Scholar 

  • Browder, J., Z. Zein-Eldin, M. Criales, M. Robblee, S. Wong, T. Jackson, and D. Johnson. 2002. Dynamics of pink shrimp (Farfantepenaeus duorarum) recruitment potential in relation to salinity and temperature in Florida Bay. Estuaries 256B: 1355–1371. doi:10.1007/BF02692230.

    Article  Google Scholar 

  • Brush, G.S., and W.B. Hilgartner. 2000. Paleoecology of submerged macrophytes in the upper Chesapeake Bay. Ecological Monographs 704: 645–667.

    Article  Google Scholar 

  • Cole, K.L., and E. Wahl. 2000. A late Holocene paleoecological record from Torrey Pines State Reserve, California. Quaternary Research 533: 341–351. doi:10.1006/qres.1999.2121.

    Article  CAS  Google Scholar 

  • Cosby, B.J. 1993. An examination of the relationships of stage, discharges and meteorology in the panhandle and Taylor Slough areas of Everglades National Park to salinity in upper Florida Bay. Volumes 1–5. Charlottesville, Virginia: University of Virginia.

    Google Scholar 

  • Cronin, T.M., C.W. Holmes, G.L. Brewster-Wingard, S.E. Ishman, H.J. Dowsett, D. Keyser, and N. Waibel. 2001. Historical trends in epiphytal ostracodes from Florida Bay: implications for seagrass and macro-benthic algal variability. Bulletins of American Paleontology 361: 159–197.

    Google Scholar 

  • Davis, S.M., and J.C. Ogden. 1994. Introduction. In Everglades: The ecosystem and its restoration, eds. S.M. Davis, and J.C. OgdenDelray Beach, Florida: St. Lucie.

    Google Scholar 

  • Davis, S.M., L.H. Gunderson, W.A. Park, J.R. Richardson, and J.E. Mattson. 1994. Landscape dimension, composition, and function in a changing Everglades ecosystem. In Everglades: The ecosystem and its restoration, eds. S.M. Davis, and J.C. OgdenDelray Beach, Florida: St. Lucie.

    Google Scholar 

  • Davis, S.M., D.L. Childers, J.L. Lorenz, H.L. Wanless, and T.A. Hopkins. 2005. A conceptual model of ecological interactions in the mangrove estuaries of the Florida Everglades. Wetlands 25: 832–842. doi:10.1672/0277-5212(2005)025[0832:ACMOEI]2.0.CO;2.

    Article  Google Scholar 

  • Douglas, M.S. 1947. The Everglades: River of grass, 60th anniversary addition. Sarasota, Florida: Pineapple.

    Google Scholar 

  • Ducat, D.A., and S.A. Kuehl. 1995. Non-steady state 210Pb flux and the use of 228Ra/226Ra as a geochronometer on the Amazon continental shelf. Marine Geology 125: 329–350. doi:10.1016/0025-3227(95)00018-T.

    Article  Google Scholar 

  • Enfield, D.B., A.M. Mestas-Nunez, and P.J. Trimble. 2001. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U. S. Geophysical Research Letters 2810: 2077–2080. doi:10.1029/2000GL012745.

    Article  Google Scholar 

  • Fourqurean, J.W., and M.B. Robblee. 1999. Florida Bay: a history of recent ecological changes. Estuaries 22: 345–357. doi:10.2307/1353203.

    Article  CAS  Google Scholar 

  • Helsell, D.R. and R.M. Hirsch. 1991. Statistical methods in water resources. In Techniques of Water Resource Investigations of the United States Geological Survey, Book 4 Hydrologic Analysis and Interpretation, Chapter A3. U. S. Reston, Virginia: Geologic Survey.

  • Hutson, W.H. 1979. The Agulhas Current during the Pleistocene: analysis of modern faunal analogs. Science 2074426: 64–66. doi:10.1126/science.207.4426.64.

    Article  Google Scholar 

  • Imbrie, J., and N.G. Kipp. 1971. A new micropaleontological method for quantitative paleoclimatology: application to a Late Pleistocene Caribbean core. In The Late Cenozoic Glacial Ages, ed. K.K. TurekianNew Haven, CT: Yale Univ. Press.

    Google Scholar 

  • Ishman, S.E., T.M. Cronin, G.L. Brewster-Wingard, D.A. Willard, and D.J. Verardo. 1998. A record of ecosystem change, Manatee Bay, Barnes Sound, Florida. proceedings of the international coastal symposium (ICS98). Journal of Coastal Research, Special Issue 26: 125–138.

    Google Scholar 

  • Kashigan, S.K. 1991. Multivariate statistical analysis. New York: Radius.

    Google Scholar 

  • Kelble, C.R., E.M. Johns, W.K. Nuttle, T.N. Lee, R.Y. Smith, and P.B. Ortner. 2007. Salinity patterns of Florida Bay. Estuarine, Coastal and Shelf Science 71: 318–334. doi:10.1016/j.ecss.2006.08.006.

    Article  Google Scholar 

  • Knight, E. 2001. The status of hydrologic conditions in Everglades National Park June 2000 to May 2001. Homestead, Florida: South Florida Natural Resources Center, Everglades National Park.

    Google Scholar 

  • Knight, E., and K. Kotun. 2001. The status of hydrologic conditions in Everglades National Park June 1999 to May 2000. Homestead, Florida: South Florida Natural Resources Center, Everglades National Park.

    Google Scholar 

  • Marshall III, F.E., D. Smith, and D. Nickerson. 2004. Using statistical models to simulate salinity variation and other physical parameters in north Florida Bay. New Smyrna Beach, Florida: Cetacean Logic Foundation, Inc[Available at http://sofia.usgs.gov/publications/reports/salinity_variation/index.html].

    Google Scholar 

  • Marshall III, F.E. 2005. RECOVER Southern Estuaries performance measures: identification of hydrology–salinity relationships for coastal estuaries and analysis of interim CERP update scenarios. New Smyrna Beach, Florida: Environmental Consulting & Technology, Inc.[Available at http://sofia.usgs.gov/publications/reports/hydrosal_relation/ index.html].

    Google Scholar 

  • Marshall, F.E. 2008. Task 3—Development of additional multivariate linear regression salinity models for Florida Bay and the southwest Gulf coast, Everglades National Park. Critical Ecosystems Studies Initiative Task Report to Everglades National Park. New Smyrna Beach, Florida: Cetacean Logic Foundation, Inc[Available at http://sofia.usgs.gov/publications/reports/mlr_sal_models/ index.html].

    Google Scholar 

  • Marshall, F.E., and W.K. Nuttle. 2008. Task 7—Simulating and forecasting salinity in Florida Bay: a review of models. Critical Ecosystems Studies Initiative Project Task Report for Everglades National Park. New Smyrna Beach, Florida: Cetacean Logic Foundation, Inc[Available at http://sofia.usgs.gov/publications/reports/salinity_flbay/ index.html].

    Google Scholar 

  • McPherson, B.F., R. Halley. 1996. The South Florida environment—a region under stress. U. S. Geological Survey, Circular 1134. Washington, DC: United States Government Printing Office.

    Google Scholar 

  • Montague, C.L., and J.A. Ley. 1993. A possible effect of salinity fluctuation on abundance of benthic vegetation and associated fauna in northeastern Florida Bay. Estuaries 16: 703–717. doi:10.2307/1352429.

    Article  CAS  Google Scholar 

  • Neter, J., W. Wasserman, and M.H. Kutner. 1990. Applied linear statistical models. Boston, Massachusetts: Irwin.

    Google Scholar 

  • Nicholls, R.J., P.P. Wong, V.R. Burkett, J.O. Codignotto, J.E. Hay, R.F. McLean, S. Ragoonaden, and C.D. Woodroffe. 2007. Coastal systems and low-lying areas. In Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, eds. M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden, and C.E. Hanson, 315–356. Cambridge, United Kingdom: Cambridge University Press.

    Google Scholar 

  • Nuttle, W.K. 1997. Central and Southern Florida Project Restudy: Salinity transfer functions for Florida Bay and west coast estuaries. Volume 1: Main Report. Miami, Florida: Southeast Environmental Research Program, Florida International University.

    Google Scholar 

  • Ogden, J.C., S.M. Davis, K.J. Jacobs, T. Barnes, and H.E. Fling. 2005. The use of conceptual ecological models to guide ecosystem restoration in South Florida. Wetlands 25: 795–809. doi:10.1672/0277-5212(2005)025[0795:TUOCEM]2.0.CO;2.

    Article  Google Scholar 

  • Oswald, W.W., L.B. Brubaker, F.S. Hu, and G.W. Kling. 2003. Holocene pollen records from the central Arctic Foothills, northern Alaska: testing the role of substrate in the response of tundra to climate change. Journal of Ecology 91: 1034–1048. doi:10.1046/j.1365-2745.2003.00833.x.

    Article  Google Scholar 

  • Parker, G.G., G.E. Ferguson, S.K. Love, et al. 1955. Water resources of southeastern Florida with special reference to the geology and ground water of the Miami area. Water Supply Paper 1255. Washington, DC: U. S. Geological Survey.

    Google Scholar 

  • Parsons, M.L., Q. Dortch, R.E. Turner, and N.N. Rabalais. 1999. Salinity history of coastal marshes reconstructed from diatom remains. Estuaries 22: 1078–1089. doi:10.2307/1353085.

    Article  Google Scholar 

  • Pitts, P., D. Hallac, D. Deis, and J. Browder. 2005. Establishing targets for salinity in Florida’s Southern Estuaries. Southern Estuaries Sub-team of RECOVER, U. S. Jacksonville, Florida: Army Corps of Engineers.

    Google Scholar 

  • Renken, R.A., J. Dixon, J. Koehnstedt, A.C. Lietz, S. Ishman, R.L. Marella, P. Telis, J. Rogers, and S. Memberg. 2005. Impact of anthropogenic development on coastal ground-water hydrology in southeastern Florida, 1900–2000. Circular 1275. Reston, Virginia: United States Geological Survey.

    Google Scholar 

  • Robbins, J.S., C.W. Holmes, R. Halley, M. Bothner, E. Shinn, J. Graney, G. Keeler, M. ten Brink, K.A. Orlandini, and D. Rudnick. 2000. Time-averaged fluxes of lead and fallout radionuclides to sediments in Florida Bay. Journal of Geophysical Research 105: 28,805–28,821. doi:10.1029/1999JC000271.

    Article  CAS  Google Scholar 

  • Rudnick, D.T., P.B. Ortner, J.A. Browder, and S.M. Davis. 2005. A conceptual model of Florida Bay. Wetlands 25: 870–883. doi:10.1672/0277-5212(2005)025[0870:ACEMOF]2.0.CO;2.

    Article  Google Scholar 

  • Schaffranek, R.W., T.J. Smith, and C.W. Holmes. 2001. An investigation of the interrelation of Everglades hydrology and Florida Bay dynamics to ecosystem processes in South Florida. Fact Sheet FS-49-01. Reston, Virginia: U. S. Department of Interior, U. S. Geological Survey.

    Google Scholar 

  • Sklar, F.H., M.J. Chimney, S. Newman, P. McCormick, D. Gawlik, S. Miao, C. McVoy, W. Said, J. Newman, C. Coronado, G. Crozier, M. Korvela, and K. Rutchey. 2005. The ecological–societal underpinnings of everglades restoration. Frontiers in Ecology and the Environment 33: 161–169.

    Google Scholar 

  • Smith, T.J., J.H. Hudson, M.B. Robblee, G.V.N. Powell, and P.J. Isdale. 1989. Freshwater flows from the Everglades to Florida Bay: a historical reconstruction based on fluorescent banding in the coral Solenastrea bournoni. Bulletin of Marine Science 44: 274–282.

    Google Scholar 

  • South Florida Water Management District and Interagency Modeling Center. 2005. Documentation of the South Florida Water Management Model. West Palm Beach, Florida: South Florida Water Management District.

    Google Scholar 

  • Symposium on the Classification of Brackish Waters. 1958 [1959]. Final resolution: the Venice system for the classification of marine waters according to salinity. Archivo di Oceanografia e Limnologia 11supp.: 243–245.

    Google Scholar 

  • Swart, P.K., G. Healy, L. Greer, M. Lutz, A. Saied, D. Anderegg, R.E. Dodge, and D. Rudnick. 1999. The use of proxy chemical records in coral skeletons to ascertain past environmental conditions in Florida Bay. Estuaries 22: 384–397. doi:10.2307/1353206.

    Article  CAS  Google Scholar 

  • Tabb, D.C. 1967. Prediction of estuarine salinities in Everglades National Park, Florida, by the use of ground water records. Ph.D. Dissertation, University of Miami, Miami, Florida.

  • Trappe, C.A., and G.L. Brewster-Wingard. 2001. Molluscan fauna from Core 25B, Whipray Basin, Central Florida Bay, Everglades National Park. Open-File Report 01–143. U. S. Geological Survey, Reston, VA. [Available at http://sofia.usgs.gov/publications/ofr/01-143/index.html]

  • UNESCO. 1985. The international system of units (SI) in oceanography, UNESCO Technical Papers No. 45, IAPSO Pub. Sci. No. 32, Paris, France.

  • U. S. Army Corps of Engineers. 1999. Central and southern Florida comprehensive review study, final integrated feasibility report and programmatic environmental impact statement. Jacksonville, Florida. [Available at http://www.evergladesplan.org/]

  • U. S. Army Corps of Engineers. 2006. Comprehensive Everglades restoration plan system-wide performance measures, RECOVER Leadership Group draft.

  • Walling, D.E. 2003. Using environmental radionuclides as tracers in sediment budget investigations, erosion, and sediment transport measurement in rivers, p. 57–78. In Technological and methodological advances, Proceedings of the Oslo Workshop on Erosion and Sediment Transport in Rivers, June 2002.

  • Willard, D.A., C.E. Bernhardt, C.W. Holmes, B. Landacre, and M. Marot. 2006. Response of Everglades tree islands to environmental change. Ecological Monographs 764: 565–583. doi:10.1890/0012-9615(2006)076[0565:ROETIT]2.0.CO;2.

    Article  Google Scholar 

  • Wingard, G.L., T.M. Cronin and W. Orem. 2007a. Ecosystem history, p. 9–29. In Florida Bay Science Program: A synthesis of research on Florida Bay, eds. W. Nuttle, and J. Hunt. Florida Fish and Wildlife Research Institute Technical Report, TR-11. [Available at http://research.myfwc.com/engine/download_redirection_process.asp?file = tr11%5F2211%2Epdf&objid = 52697&dltype = publication]

  • Wingard, G.L., J.W. Hudley, C.W., Holmes, D.A. Willard, and M. Marot. 2007b. Synthesis of age data and chronology for Florida Bay and Biscayne Bay Cores collected for the Ecosystem History of South Florida’s Estuaries Projects. U. S. Geological Survey, Open File Report 2007-1203. Reston, Virginia. [Available at http://sofia.usgs.gov/ publications/ofr/2007-1203/index.html]

  • Wingard, G.L., J.R. Stone, C.A. Trappe, and C. Budet. 2007c. Ecosystem history of South Florida estuaries database. [Available at http://sofia.usgs.gov/exchange/flaecohist/]

  • Wingard, G.L. and J.W. Hudley. 2008. Verification of a molluscan dataset for paleosalinity estimation using modern analogues: a tool for restoration of South Florida’s estuaries. Proceedings, 2008 Florida Bay and Adjacent Marine Systems Science Conference.

Download references

Acknowledgments

The modeling research was supported by the Critical Ecosystem Studies Initiative (ENP) and the RECOVER branch of the U. S. Army Corps of Engineers. The paleoecologic work was supported by the U. S. Geological Survey Priority Ecosystems Studies—South Florida Study Unit. Special thanks to DeWitt Smith (ENP) and Cheryl Buckingham (USACE) for financial support and technical guidance, to Ronnie Best (USGS) and Lorraine Heisler (USF&WS) for implementing workshops on the application of paleoecologic data that led to this collaboration, and to David Hallac (ENP) for stimulating the initial discussions. We would like to thank Thomas M. Cronin and Debra A. Willard (USGS) for early reviews of this manuscript. Emily Philips (USGS) prepared the GIS map in Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank E. Marshall III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, F.E., Wingard, G.L. & Pitts, P. A Simulation of Historic Hydrology and Salinity in Everglades National Park: Coupling Paleoecologic Assemblage Data with Regression Models. Estuaries and Coasts 32, 37–53 (2009). https://doi.org/10.1007/s12237-008-9120-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-008-9120-1

Keywords

Navigation