Skip to main content
Log in

The influence of light and nutrient availability on floating plant dominance in forested temporary and semipermanent wetlands

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Nutrient availability is well documented to control floating plant dominance, but the role of secondary drivers in mediating this relationship is less understood. Light may act as an important secondary driver in aquatic plant communities, particularly with tree canopies in forested wetlands. I explored the dual roles of light and nutrients (nitrogen and phosphorus) in affecting abundances of free-floating duckweeds (Lemnoideae and Wolffioideae) in isolated wetlands. I surveyed producers and abiotic conditions in 35 temporary and semipermanent wetlands with differing forest canopy openness in southwest Michigan, USA. Also, I manipulated nutrient supply, light levels, and initial densities of floating plants factorially in outdoor mesocosms. In the survey, duckweeds could dominate wetlands at nearly the entire range of light conditions, and in lower light and higher nitrogen duckweeds dominated frequently. However, emergent and submerged plants only dominated wetlands at high light levels, and duckweed abundances had no clear relationship with nitrogen levels under those conditions. In the experiment, I found a light × nutrient interaction in the initial response of duckweeds, although this pattern dissipated later in the experiment as variability increased. These data suggest that light availability may be an important secondary driver to determine floating plant dominance in forested wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Allende, L., I. Izaguirre, I. O’Farrell, M. Solange Vera, G. Chaparro, R. Sinistro & M. Sánchez, 2021. Fast responses of microbial plankton communities associated to regime shifts in vegetated wetlands (free-floating plants vs phytoplankton-dominance): an experimental cross-transplant approach. Limnologica 86: 125845.

    Article  Google Scholar 

  • Allinson, G., F. Stagnitti, S. Colville, J. Hill & M. Coates, 2000. Growth of floating aquatic macrophytes in alkaline industrial wastewaters. Journal of Environmental Engineering 126: 22142.

    Article  Google Scholar 

  • Bachmann, R. W. & D. E. Canfield Jr., 1996. Use of an alternative method for monitoring total nitrogen concentrations in Florida lakes. Hydrobiologia 323: 1–8.

    Article  CAS  Google Scholar 

  • Bagella, S. & M. C. Caria, 2012. Diversity and ecological characteristics of vascular flora in Mediterranean temporary pools. Comptes Rendus Biologies 335: 69–76.

    Article  PubMed  Google Scholar 

  • Bedford, B. L., M. R. Walbridge & A. Aldous, 1999. Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology 80: 2151–2169.

    Article  Google Scholar 

  • Bog, M., P. Schneider, F. Hellwig, S. Sachse, E. Z. Kochieva, E. Martyrosian, E. Landolt & K.-J. Appenroth, 2013. Genetic characterization and barcoding of taxa in the genus Wolffia Horkel ex Schleid. (Lemnaceae) as revealed by two plastidic markers and amplified fragment length polymorphism (AFLP). Planta 237: 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Borman, S., R. Korth & J. Temte, 1997. Through the Looking Glass… A Field Guide to Aquatic Plants, Reindl Printing, Inc., Merrill:

    Google Scholar 

  • Cáceres, C. E., A. J. Tessier, A. Andreou & M. A. Duffy, 2008. Stoichiometric relationships in vernal pond plankton communities. Freshwater Biology 53: 1291–1302.

    Article  CAS  Google Scholar 

  • Carlier, J., E. Davis, S. Ruas, D. Byrne, J. M. Caffrey, N. E. Coughlan, J. T. A. Dick & F. E. Lucy, 2020. Using open-source software and digital imagery to efficiently and objectively quantify cover density of an invasive alien plant species. Journal of Environmental Management 266: 110519.

    Article  PubMed  Google Scholar 

  • Céréghino, R., J. Biggs, B. Oertli & S. Declerck, 2008. The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597: 1–6.

    Article  Google Scholar 

  • Chapin, F. S., M. D. Robards, H. P. Huntington, J. F. Johnstone, S. F. Trainor, G. P. Kofinas, R. W. Ruess, N. Fresco, D. C. Natcher & R. L. Naylor, 2006. Directional changes in ecological communities and social–ecological systems: a framework for prediction based on Alaskan examples. American Naturalist 168: S36–S49.

    Article  PubMed  Google Scholar 

  • Crumpton, W. G., T. M. Isenhart & P. D. Mitchell, 1992. Nitrate and organic N analyses with second-derivative spectroscopy. Limnology and Oceanography 37: 907–913.

    Article  CAS  Google Scholar 

  • de Tezanos Pinto, P. & I. O’Farrell, 2014. Regime shifts between free-floating plants and phytoplankton: a review. Hydrobiologia 740: 13–24.

    Article  CAS  Google Scholar 

  • Dickinson, M. B. & T. E. Miller, 1998. Competition among small, free-floating, aquatic plants. American Midland Naturalist 140: 55–67.

    Article  Google Scholar 

  • Eaton, A.D., American Public Health Association, American Water Works Association & Water Environment Federation, 2005. Standard Methods for the Examination of Water and Wastewater (21 ed.). American Public Health Association, American Water Works Association & Water Environment Federation, Washington, DC.

  • Galatowitsch, S. M. & A. G. van der Valk, 1996. The vegetation of restored and natural prairie wetlands. Ecological Applications 6: 102–112.

    Article  Google Scholar 

  • Geider, R. J., H. L. MacIntyre & T. M. Kana, 1996. A dynamic model of photoadaptation in phytoplankton. Limnology and Oceanography 41: 1–15.

    Article  CAS  Google Scholar 

  • Gérard, J. & L. Triest, 2018. Competition between invasive Lemna minuta and native L. minor in indoor and field experiments. Hydrobiologia 812: 57–65.

    Article  CAS  Google Scholar 

  • Germain, R. M., M. M. Mayfield & B. Gilbert, 2018. The ‘filtering’ metaphor revisited: competition and environment jointly structure invasibility and coexistence. Biology Letters 14: 20180460.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giblin, S. M., J. N. Houser, J. F. Sullivan, H. A. Langrehr, J. T. Rogala & B. D. Campbell, 2014. Thresholds in the response of free-floating plant abundance to variation in hydraulic connectivity, nutrients, and macrophyte abundance in a large floodplain river. Wetlands 34: 413–425.

    Article  Google Scholar 

  • Groffman, P. M., J. S. Baron, T. Blett, A. J. Gold, I. Goodman, L. H. Gunderson, B. M. Levinson, M. A. Palmer, H. W. Paerl, G. D. Peterson, N. L. Poff, D. W. Rejeski, J. F. Reynolds, M. G. Turner, K. C. Weathers & J. Wiens, 2006. Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9: 1–13.

    Article  Google Scholar 

  • Groffman, P. M., M. L. Cadenasso, J. Cavender-Bares, D. L. Childers, N. B. Grimm, J. M. Grove, S. E. Hobbie, L. R. Hutyra, G. D. Jenerette, T. McPhearson, D. E. Pataki, S. T. A. Pickett, R. V. Pouyat, E. Rosi-Marshall & B. L. Ruddell, 2017. Moving towards a new urban systems science. Ecosystems 20: 38–43.

    Article  Google Scholar 

  • Guy, M., G. Granoth & J. Gale, 1990a. Cultivation of Lemna gibba under desert conditions. I: twelve months of continuous cultivation in open ponds. Biomass 21: 145–156.

    Article  Google Scholar 

  • Guy, M., G. Granoth & J. Gale, 1990b. Cultivation of Lemna gibba under desert conditions. II: the effect of raised winter temperature, CO2 enrichment and shading on productivity. Biomass 23: 1–11.

    Article  Google Scholar 

  • Hillman, W. S., 1961. The Lemnaceae, or duckweeds: a review of the descriptive and experimental literature. Botanical Review 27: 221–287.

    Article  CAS  Google Scholar 

  • Holland, M. M. & C. J. Burk, 1990. The marsh vegetation of three Connecticut River oxbows: a 10-year comparison. Rhodora 92: 166–204.

    Google Scholar 

  • Jacobs, D. L., 1947. An ecological life-history of Spirodela polyrhiza (greater duckweed) with emphasis on the turion phase. Ecological Monographs 17: 437–469.

    Article  Google Scholar 

  • Jeffries, M., 1991. The ecology and conservation value of forestry ponds in Scotland, United Kingdom. Biological Conservation 58: 191–211.

    Article  Google Scholar 

  • John, J. A., K. Ruggiero & E. R. Williams, 2002. Alpha(n) designs. Australian and New Zealand Journal of Statistics 44: 457–465.

    Article  Google Scholar 

  • Keddy, P. A., 1976. Lakes as islands: the distributional ecology of two aquatic plants, Lemna minor L. and L. triscula L. Ecology 57: 353–359.

    Article  Google Scholar 

  • Kim, S. & S. V. Yi, 2007. Understanding relationship between sequence and functional evolution in yeast proteins. Genetica 131: 151–156.

    Article  CAS  PubMed  Google Scholar 

  • Kuehl, R. O., 2000. Design of Experiments: Statistical Principles of Research Design and Analysis, Duxbury Thomson Learning, Pacific Grove:

    Google Scholar 

  • Kufel, L., M. Strzałek, A. Konieczna & K. Izdebska, 2010. The effect of Stratiotes aloides L. and nutrients on the growth rate of Lemna minor L. Aquatic Botany 92: 168–172.

    Article  CAS  Google Scholar 

  • Les, D. H., D. J. Crawford, E. Landolt, J. D. Gabel & R. T. Kimball, 2002. Phylogeny and systematics of Lemnaceae, the duckweed family. Systematic Botany 27: 221–240.

    Google Scholar 

  • Lu, J., Z. Wang, W. Xing & G. Liu, 2013. Effects of substrate and shading on the growth of two submerged macrophytes. Hydrobiologia 700: 157–167.

    Article  Google Scholar 

  • Magahud, J. C. & S. L. P. Dalumpines, 2021. Growth of duckweeds (Lemna minor L.) as affected by light intensity, nutrient solution concentration, and light × nutrient interaction. Philippine Science Letters 14: 119–129.

    Google Scholar 

  • McLay, C. L., 1976. The effect of pH on the population growth of three species of duckweed: Spirodela oligorrhiza, Lemna minor and Wolffia arrhiza. Freshwater Biology 6: 125–136.

    Article  CAS  Google Scholar 

  • Meerhoff, M., N. Mazzeo, B. Moss & L. Rodríguez-Gallego, 2003. The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology 37: 377–391.

    Article  Google Scholar 

  • Mitsch, W. J. & J. G. Gosselink, 2015. Wetlands, 5th ed. Wiley, Hoboken:

    Google Scholar 

  • Moi, D. A., D. C. Alves, P. A. P. Antiqueira, S. M. Thomaz, F. T. de Mello, C. C. Bonecker, L. C. Rodrigues, R. García-Ríos & R. P. Mormul, 2021. Ecosystem shift from submerged to floating plants simplifying the food web in a tropical shallow lake. Ecosystems 24: 628–639.

    Article  Google Scholar 

  • Morris, K., P. C. Bailey, P. I. Boon & L. Hughes, 2003. Alternative stable states in the aquatic vegetation of shallow urban lakes. II. Catastrophic loss of aquatic plants consequent to nutrient enrichment. Marine and Freshwater Research 54: 201–215.

    Article  CAS  Google Scholar 

  • O’Farrell, I., P. de Tezanos Pinto & I. Izaguirre, 2007. Phytoplankton morphological response to the underwater light conditions in a vegetated wetland. Hydrobiologia 578: 65–77.

    Article  Google Scholar 

  • O’Farrell, I., P. de Tezanos Pinto, P. L. Rodríguez, G. Chaparro & H. N. Pizarro, 2009. Experimental evidence of the dynamic effect of free-floating plants on phytoplankton ecology. Freshwater Biology 54: 363–375.

    Article  Google Scholar 

  • Ögren, E., G. Öquist & J. Hällgren, 1984. Photoinhibition of photosynthesis in Lemna gibba as induced by the interaction between light and temperature I. Photosynthesis in Vivo. Physiologia Plantarum 62: 181–186.

    Article  Google Scholar 

  • Paolacci, S., S. Harrison & M. A. K. Jansen, 2018. The invasive duckweed Lemna minuta Kunth displays a different light utilisation strategy than native Lemna minor Linnaeus. Aquatic Botany 146: 8–14.

    Article  Google Scholar 

  • Parr, L. B., R. G. Perkins & C. F. Mason, 2002. Reduction in photosynthetic efficiency of Cladophora glomerata, induced by overlying canopies of Lemna spp. Water Research 36: 1735–1742.

    Article  CAS  PubMed  Google Scholar 

  • Pasztaleniec, A. & M. Poniewozik, 2013. The impact of free-floating plant cover on phytoplankton assemblages of oxbow lakes (The Bug River Valley, Poland). Biologia 68: 18–29.

    Article  Google Scholar 

  • Portielje, R. & R. M. M. Roijackers, 1995. Primary succession of aquatic macrophytes in experimental ditches in relation to nutrient input. Aquatic Botany 50: 127–140.

    Article  Google Scholar 

  • R Development Core Team, 2009. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna:

    Google Scholar 

  • Roijackers, S., S. Szabó & M. Scheffer, 2004. Experimental analysis of the competition between algae and duckweed. Archiv Für Hydrobiologie 160: 401–412.

    Article  Google Scholar 

  • Scheffer, M., 2004. Ecology of Shallow Lakes, 2nd ed. Chapman and Hall, London:

    Book  Google Scholar 

  • Scheffer, M., S. Szabó, A. Gragnani, E. H. van Nes, S. Rinaldi, N. Kautsky, J. Norberg, R. M. M. Roijackers & R. J. M. Franken, 2003. Floating plant dominance as a stable state. Proceedings of the National Academy of Sciences of United States of America 100: 4040–4045.

    Article  CAS  Google Scholar 

  • Sculthorpe, C. D., 1967. The Biology of Aquatic Vascular Plants, Edward Arnold Ltd., London:

    Google Scholar 

  • Smith, S. D. P., 2012. Identifying and evaluating causes of alternative community states in wetland plant communities. Oikos 121: 675–686.

    Article  Google Scholar 

  • Smith, S. D. P., 2014. The roles of nitrogen and phosphorus in regulating the dominance of floating and submerged aquatic plants in a field mesocosm experiment. Aquatic Botany 112: 1–9.

    Article  CAS  Google Scholar 

  • Świerk, D. & M. Krzyżaniak, 2019. Is there a pattern for occurrence of macrophytes in Polish ponds? Water 11: 1738.

    Article  CAS  Google Scholar 

  • Tiner, R. W., 2003. Geographically isolated wetlands of the United States. Wetlands 23: 494–516.

    Article  Google Scholar 

  • Van Gerven, L. P. A., J. J. M. de Klein, D. J. Gerla, B. W. Kooi, J. J. Kuiper & W. M. Mooji, 2015. Competition for light and nutrients in layered communities of aquatic plants. American Naturalist 186: 72–82.

    Article  PubMed  Google Scholar 

  • Villamagna, A. M. & B. R. Murphy, 2010. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshwater Biology 55: 282–298.

    Article  Google Scholar 

  • Walsh, É., H. Kuehnhold, S. O’Brien, N. E. Coughlan & M. A. K. Jansen, 2021. Light intensity alters the phytoremediation potential of Lemna minor. Environmental Science and Pollution Research 28: 16394–16407.

    Article  CAS  PubMed  Google Scholar 

  • Welschmeyer, N. A., 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography 39: 1985–1992.

    Article  CAS  Google Scholar 

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems, Academic Press, San Diego:

    Google Scholar 

  • White, H. L., 1937. The interaction of factors in the growth of Lemna: XI. The interaction of nitrogen and light intensity in relation to growth and assimilation. Annals of Botany 1: 623–647.

    Article  CAS  Google Scholar 

  • Yin, Y., C. Yu, L. Yu, J. Zhao, C. Sun, Y. Ma & G. Zhou, 2015. The influence of light intensity and photoperiod on duckweed biomass and starch accumulation for bioethanol production. Bioresource Technology 187: 84–90.

    Article  CAS  PubMed  Google Scholar 

  • Zelnik, I., M. Potisek & A. Gaberščik, 2012. Environmental conditions and macrophytes of karst ponds. Polish Journal of Environmental Studies 21: 1911–1920.

    CAS  Google Scholar 

Download references

Acknowledgements

Many people provided feedback and advice for this study, including C. Cáceres, S. Hall, M. Leibold, G. Mittelbach, D. Schneider, and A. Suarez. C. Kellogg played a crucial role in carrying out the mesocosm experiment. Additional field and laboratory help was provided by M. Allen, C. Cáceres, P. de Tezanos Pinto, A. Golubski, J. Howell, V. Ku, T. McKoy, D. McLennan, M. Pinkowski, E. Randa, T. Robinson, D. Schoolmaster, C. Smith, and P. Woodruff. G. Mittelbach, E. Litchman, P. Woodruff, M. Leibold, M. Martin, S. Hamilton, and N. Consolatti provided logistical support and/or lab equipment and access during data collection. The Parks and Recreation and Wildlife Divisions of the Michigan Department of Natural Resources (facilitated by C. Hanaburgh), Kellogg Biological Station (KBS), Pierce Cedar Creek Institute, and R. and A. Burlingham allowed use of field sites. Initial data collection was funded by National Science Foundation (NSF) award DEB-0709578, Society of Wetland Scientists, University of Illinois, and KBS (NSF GK-12 Fellowship with DGE-0538509 and G.H. Lauff and Visiting Graduate Student Awards). KBS hosted me during the early part of this work, and this is KBS contribution number 2317. Analysis and writing were supported by Delaware State University.

Funding

Funding was provided by National Science Foundation (Grant No. DEB-0709578) and Society of Wetland Scientists, and W.K. Kellogg Biological Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrid D. P. Smith.

Ethics declarations

Conflict of interest

The author has no financial or non-financial competing interests to disclose.

Additional information

Handling editor: Katya E. Kovalenko

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 485 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, S.D.P. The influence of light and nutrient availability on floating plant dominance in forested temporary and semipermanent wetlands. Hydrobiologia 849, 2595–2608 (2022). https://doi.org/10.1007/s10750-022-04881-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04881-1

Keywords

Navigation