Skip to main content
Log in

Evaluation of growth and oxidative stress as indicative of salinity tolerance by the invasive tropical aquatic macrophyte tanner grass

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In an estuary of a neotropical region located in Brazil, Urochloa arrecta occurs only in the area of freshwater. Nonetheless, information about the capacity of this population to invade areas considered inhospitable, i.e., saltwater, is scarce. In this sense, the aim of this study was to evaluate the effect of intermediate (20 ppt) and high (30 ppt) salinity on individuals from a population of U. arrecta located in the freshwater region of an estuarine ecosystem. Analyses of plant biomass, nitrogen, phosphorus, malondialdehyde (MDA) and hydrogen peroxide content were evaluated as possible indicators of tolerance to salt stress. Our results showed that salinity reduced growth and increased oxidative stress. However, under conditions of intermediate salinity, U. arrecta individuals showed a biomass gain greater than 60%, MDA content similar to that in freshwater, and higher nitrogen absorption and assimilation. We conclude that U. arrecta probably presents physiological adjustments that allow its survival at intermediate salinity. Thus, the ability of this species to expand in this area alerts to the importance of studies that seek to adopt policies for the control or management of the species in saline ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ahanger, M. A., N. S. Tomar, M. Tittal, S. Argal & R. M. Agarwal, 2017. Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiology and Molecular Biology of Plants 23: 731–744.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexieva, V., I. Sergiev, S. Mapelli & E. Karanov, 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environment 24: 1337–1344.

    Article  CAS  Google Scholar 

  • Allen, S. E., H. M. Grimshaw, J. A. Parkinson & C. Quarmby, 1974. Chemical Analysis of Ecological Materials, Blackwell, Oxford:

    Google Scholar 

  • Alves, R. M. A., M. B. Albuquerque & L. G. Barbosa, 2017. Status of the invasion of a Poaceae species in tropical semiarid reservoirs. Planta Daninha 35: 1–8.

    Article  Google Scholar 

  • Amorim, S. R., C. A. Umetsu, D. Toledo & A. F. M. Camargo, 2015. Effects of a non native species of Poaceae on aquatic macrophyte community composition: a comparison with a native species. Journal of Aquatic Plant Management 53: 191–196.

    Google Scholar 

  • Atia, A., A. Debez, M. Rabhi, Z. Barhoumi, C. C. Haouari, H. Gouia, C. Abdelly & A. Smaoui, 2019. Salt Tolerance and Potential Uses for Saline Agriculture of Halophytes from the Poaceae. 223–237.

  • Ball, M. C., 1996. Comparative ecophysiology of mangrove forest and tropical lowland moist rainforest. Tropical Forest Plant Ecophysiology 461–462.

  • Barreiros, A. L. B. S., J. M. David & J. P. David, 2006. Estresse oxidativo: Relação entre geração de espécies reativas e defesa do organismo. Quimica Nova 29: 113–123.

    Article  CAS  Google Scholar 

  • Bora, L. S., S. M. Thomaz & A. A. Padial, 2020. Evidence of rapid evolution of an invasive poaceae in response to salinity. Aquatic Sciences 82: 1–16.

    Article  Google Scholar 

  • Callaway, J. C., V. T. Parker, M. C. Vasey & L. M. Schile, 2007. Emerging issues for the restoration of tidal marsh ecosystems in the context of predicted climate change. BioOne 54: 234–248.

    Google Scholar 

  • Carniatto, N., S. M. Thomaz, E. R. Cunha, R. Fugi & R. R. Ota, 2013. Effects of an invasive alien Poaceae on aquatic macrophytes and fish communities in a neotropical reservoir. Biotropica 45: 747–754.

    Article  Google Scholar 

  • Carvalho, R. F., V. Quecini & L. E. P. Peres, 2010. Hormonal modulation of photomorphogenesis-controlled anthocyanin accumulation in tomato (Solanum lycopersicum L. cv Micro-Tom) hypocotyls: physiological and genetic studies. Plant Science 178: 258–264.

    Article  CAS  Google Scholar 

  • Céccoli, G., J. Ramos, V. Pilatti, I. Dellaferrera & J. C. Tivano, 2015. Salt glands in the Poaceae family and their relationship to salinity tolerance. The Botanical Review 81: 162–178.

    Article  Google Scholar 

  • Coetzee, J. A., 2014. Water hyacinth, Eichhornia crassipes (Pontederiaceae), reduces benthic macroinvertebrate diversity in a protected subtropical lake in South Africa. Biodiversity and Conservation 23: 1319–1330.

    Article  Google Scholar 

  • Crain, C. M., 2007. Shifting nutrient limitation and eutrophication effects in marsh vegetation across estuarine salinity gradients. Estuaries and Coasts 30: 26–34.

    Article  CAS  Google Scholar 

  • Crain, C. M., B. R. Silliman, S. L. Bertness & M. D. Bertness, 2004. Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology 85: 2539–2549.

    Article  Google Scholar 

  • Cram, J. W., P. G. Torr & D. A. Rose, 2002. Salt allocation during leaf development and leaf fall in mangroves. Trees - Structure and Function 16: 112–119.

    Article  CAS  Google Scholar 

  • Deegan, B. M., S. D. White & G. G. Ganf, 2007. The influence of water level fluctuations on the growth of four emergent macrophyte species. Aquatic Botany 86: 309–315.

    Article  Google Scholar 

  • Engels, J. G. & K. Jensen, 2010. Role of biotic interactions and physical factors in determining the distribution of marsh species along an estuarine salinity gradient. Oikos 119: 679–685.

    Article  Google Scholar 

  • Esteves, B. S. & M. S. Suzuki, 2009. Efeito da salinidade sobre as plantas. Oecologia Australis 12: 662–679.

    Article  Google Scholar 

  • Ferreira, J. P. R., G. Hassemer & R. Trevisan, 2017. Aquatic macrophyte flora of coastal lakes in Santa Catarina, southern Brazil. Iheringia - Serie Botanica 72: 409–419.

    Article  Google Scholar 

  • Flora do Brasil, 2020. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/

  • Flowers, T. J. & T. D. Colmer, 2008. Salinity tolerance in halophytes. New Phytologist 179: 945–963.

    Article  CAS  Google Scholar 

  • Flowers, T. J., R. Munns & T. D. Colmer, 2015. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of Botany 115: 419–431.

    Article  CAS  PubMed  Google Scholar 

  • Foyer, C. H. & G. Noctor, 2005. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17: 1866–1875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer, C. H. & G. Noctor, 2013. Redox signaling in plants. Antioxidants & Redox Signaling 18: 2087–2090.

    Article  CAS  Google Scholar 

  • Foyer, C. H., A. V. Ruban & G. Noctor, 2017. Viewing oxidative stress through the lens of oxidative signalling rather than damage. Biochemical Journal 474: 877–883.

    Article  CAS  PubMed Central  Google Scholar 

  • Garg, N. & G. Manchanda, 2009. ROS generation in plants: boon or bane? Plant Biosystems 143: 81–96.

    Article  Google Scholar 

  • Gil, L., X. Capó, S. Tejada, G. Mateu-Vicens, P. Ferriol, S. Pinya & A. Sureda, 2020. Salt variation induces oxidative stress response in aquatic macrophytes: the case of the Eurasian water-milfoil Myriophyllum spicatum L. (Saxifragales: Haloragaceae). Estuarine, Coastal and Shelf Science 239: 1–6.

    Article  Google Scholar 

  • Gill, S. S. & N. Tuteja, 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48: 909–930.

    Article  CAS  PubMed  Google Scholar 

  • Gratão, P. L., A. Polle, P. J. Lea & R. A. Azevedo, 2005. Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology 32: 481.

    Article  PubMed  Google Scholar 

  • Gratão, P. L., C. C. Monteiro, R. F. Carvalho, T. Tezotto, F. A. Piotto, L. E. P. Peres & R. A. Azevedo, 2012. Biochemical dissection of diageotropica and Never ripe tomato mutants to Cd-stressful conditions. Plant Physiology and Biochemistry 56: 79–96.

    Article  PubMed  Google Scholar 

  • Hafsi, C., M. C. Romero-Puertas, D. K. Gupta, L. A. del Río, L. M. Sandalio & C. Abdelly, 2010. Moderate salinity enhances the antioxidative response in the halophyte Hordeum maritimum L. under potassium deficiency. Environmental and Experimental Botany 69: 129–136.

    Article  CAS  Google Scholar 

  • Halliwel, B. & J. M. Gutteridge, 2015. No Free Radicals in Biology and Medicine, Oxford University Press, Oxford:

    Book  Google Scholar 

  • Heath, R. L. & L. Packe, 1968. Photoperoxidation in isolated chloro- plasts. I. Kinetics and stochiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125: 189–198.

    Article  CAS  PubMed  Google Scholar 

  • Hoagland, D. C. & D. I. Arnon, 1950. The water culture method for growing plant without soil. California Agricultural Experiment. Circular 337. The College of Agriculture University of California, Berkeley.

  • Houle, G., L. Morel, C. E. Reynolds & J. Siegel, 2001. The effect of salinity on different developmental stages of an endemic annual plant, Aster laurentianus (Asteraceae). Botanical Society of America 88: 62–67.

    CAS  Google Scholar 

  • Houston, W. A. & L. J. Duivenvoorden, 2002. Replacement of littoral native vegetation with the ponded pasture grass Hymenachne amplexicaulis: effects on plant, macroinvertebrate and fish biodiversity of backwaters in the Fitzroy River, Central Queensland, Australia. Marine and Freshwater Research 53: 1235–1244.

    Article  Google Scholar 

  • Hussain, T., H. W. Koyro, B. Huchzermeyer & M. A. Khan, 2015. Eco-physiological adaptations of Panicum antidotale to hyperosmotic salinity: water and ion relations and anti-oxidant feedback. Flora: Morphology, Distribution, Functional Ecology of Plants 212: 30–37.

    Article  Google Scholar 

  • IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds)]. Cambridge University Press. In Press.

  • Koyro, H. W., T. Hussain, B. Huchzermeyer & M. A. Khan, 2013. Photosynthetic and growth responses of a perennial halophytic grass Panicum turgidum to increasing NaCl concentrations. Environmental and Experimental Botany 91: 22–29.

    Article  CAS  Google Scholar 

  • Krauss, K. W., C. E. Lovelock, K. L. McKee, L. López-Hoffman, S. M. L. Ewe & W. P. Sousa, 2008. Environmental drivers in mangrove establishment and early development: a review. Aquatic Botany 89: 105–127.

    Article  Google Scholar 

  • Larcher., 2000. Ecofisiologia vegetal. São Carlos. Rima.

  • Levin, L. A., D. F. Boesch, A. Covich, C. Dahm, C. Erséus, K. C. Ewel, R. T. Kneib, A. Moldenke, M. A. Palmer, P. Snelgrove, D. Strayer & J. M. Weslawski, 2001. The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4: 430–451.

    Article  CAS  Google Scholar 

  • Li, Y., W. Niu, X. Cao, J. Wang, M. Zhang, X. Duan & Z. Zhang, 2019. Effect of soil aeration on root morphology and photosynthetic characteristics of potted tomato plants (Solanum lycopersicum) at different NaCl salinity levels. BMC Plant Biology 19: 1–15.

    Article  Google Scholar 

  • Lüttge, U., 2007. Physiological Ecology of Tropical Plants, Springer, Germany:

    Google Scholar 

  • Manousaki, E. & N. Kalogerakis, 2011. Halophytes-an emerging trend in phytoremediation. International Journal of Phytoremediation 13: 959–969.

    Article  CAS  PubMed  Google Scholar 

  • Mendelssohn, I. A., K. L. McKee & T. Kong, 2001. A comparison of physiological indicators of sublethal cadmium stress in wetland plants. Environmental and Experimental Botany 46: 263–275.

    Article  CAS  Google Scholar 

  • Michelan, T. S., S. M. Thomaz, P. Carvalho, R. B. Rodrigues & M. J. Silveira, 2010a. Regeneration and colonization of an invasive macrophyte grass in response to desiccation. Natureza & Conservação 8: 133–139.

    Article  Google Scholar 

  • Michelan, T. S., S. M. Thomaz, R. P. Mormul & P. Carvalho, 2010b. Effects of an exotic invasive macrophyte (tropical signalgrass) on native plant community composition, species richness and functional diversity. Freshwater Biology 55: 1315–1326.

    Article  Google Scholar 

  • Michelan, T., M. Dainez Filho & S. Thomaz, 2017. Aquatic macrophyte mats as dispersers of one invasive plant species. Brazilian Journal of Biology 78: 5–8.

    Article  Google Scholar 

  • Midgley, J. M., M. P. Hill & M. H. Villet, 2006. The effect of water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae), on benthic biodiversity in two impoundments on the New Year’s River, South Africa. African Journal of Aquatic Science 31: 25–30.

    Article  Google Scholar 

  • Morard, P. & J. Silvestre, 1996. Plant injury due to oxygen deficiency in the root environment of soilless culture: a review. Plant and Soil 184: 243–254.

    Article  CAS  Google Scholar 

  • Mormul, R. P., S. M. Thomaz, J. Higuti & K. Martens, 2010. Ostracod (Crustacea) colonization of a native and a non-native macrophyte species of Hydrocharitaceae in the Upper Paraná floodplain (Brazil): an experimental evaluation. Hydrobiologia 644: 185–193.

    Article  Google Scholar 

  • Munns, R. & M. Tester, 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651–681.

    Article  CAS  PubMed  Google Scholar 

  • Nunes, L. S. C. & A. F. M. Camargo, 2017. A simple non-destructive method for estimating aboveground biomass of emergent aquatic macrophytes. Acta Limnologica Brasiliensia 49: 1–9.

    Google Scholar 

  • Nunes, L. S. C. & A. F. M. Camargo, 2018. Do interspecific competition and salinity explain plant zonation in a tropical estuary? Hydrobiologia 812: 67–77.

    Article  CAS  Google Scholar 

  • Nunes, L. S. C. & A. F. M. Camargo, 2020. Effects of salinity on growth, competitive interaction and total nitrogen content of two estuarine macrophyte species cultivated on artificial substrate. Aquatic Ecology 54: 973–983.

    Article  CAS  Google Scholar 

  • Nunes, L. S. C., C. A. Umetsu, M. E. F. Rodrigues, V. J. Pott & A. F. M. Camargo, 2019. Inventory of aquatic macrophyte species in coastal rivers of the São Paulo state, Brazil. Oecologia Australis 23: 829–845.

    Article  Google Scholar 

  • Odum, W. E., 1988. Comparative ecology of tidal freshwater and salt marshes. Annual Review of Ecology and Systematics 19: 147–176.

    Article  Google Scholar 

  • Parihar, P., S. Singh, R. Singh, V. P. Singh & S. M. Prasad, 2015. Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research 22: 4056–4075.

    Article  CAS  PubMed  Google Scholar 

  • Pott, V. J., A. Pott, L. C. P. Lima, S. N. Moreira & A. K. M. Oliveira, 2011. Aquatic macrophyte diversity of the Pantanal wetland and upper basin. Brazilian Journal of Biology 71: 255–263.

    Article  CAS  Google Scholar 

  • Reinert, B. L., M. R. Bornschein & C. Firkowski, 2007. Distribuição, tamanho populacional, hábitat e conservação do bicudinho-do-brejo Stymphalornis acutirostris Bornschein, Reinert e Teixeira, 1995 (Thamnophilidae). Revista Brasileira De Ornitologia 15: 493–519.

    Google Scholar 

  • Ribeiro, J. P. N., R. S. Matsumoto, L. K. Takao, A. C. Peret & M. I. S. Lima, 2011. Spatial distribution of Crinum americanum L. in tropical blind estuary: hydrologic, edaphic and biotic drivers. Environmental and Experimental Botany 71: 287–291.

    Article  Google Scholar 

  • Rodrigues, M. E. F., V. C. Souza & M. L. M. Pompêo, 2017. Levantamento florístico de plantas aquáticas e palustres na Represa Guarapiranga, São Paulo, Brasil. Boletim De Botânica 35: 1–64.

    Article  Google Scholar 

  • Short, F. T., S. Kosten, P. A. Morgan, S. Malone & G. E. Moore, 2016. Impacts of climate change on submerged and emergent wetland plants. Aquatic Botany 135: 3–17.

    Article  Google Scholar 

  • Suárez, N. & E. Medina, 2005. Salinity effect on plant growth and leaf demography of the mangrove, Avicennia germinans L. Trees 19: 721–727.

    Article  Google Scholar 

  • Thomaz, S. M., P. Carvalho, A. A. Padial & J. T. Kobayashi, 2009. Temporal and spatial patterns of aquatic macrophyte diversity in the Upper Paraná River floodplain. Brazilian Journal of Biology 69: 617–625.

    Article  CAS  Google Scholar 

  • Thomaz, S. M., R. P. Mormul & T. S. Michelan, 2015. Propagule pressure, invasibility of freshwater ecosystems by macrophytes and their ecological impacts: a review of tropical freshwater ecosystems. Hydrobiologia 746: 39–59.

    Article  Google Scholar 

  • Thouvenot, L. & G. Thiébaut, 2018. Regeneration and colonization abilities of the invasive species Elodea canadensis and Elodea nuttallii under a salt gradient: implications for freshwater invasibility. Hydrobiologia 817: 193–203.

    Article  CAS  Google Scholar 

  • Umetsu, C. A., F. C. Aguiar, M. T. Ferreira, L. F. Cancian & A. F. M. Camargo, 2018. Addressing bioassessment of tropical rivers using macrophytes: the case of Itanhaém Basin, São Paulo, Brazil. Aquatic Botany 150: 53–63.

    Article  Google Scholar 

  • Villamagna, A. M. & B. R. Murphy, 2010. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshwater Biology 55: 282–298.

    Article  Google Scholar 

  • Xue, L., X. Li, Z. Yan, Q. Zhang, W. Ding, X. Huang, B. Tian, Z. Ge & Q. Yin, 2018. Native and non-native halophytes resiliency against sea-level rise and saltwater intrusion. Hydrobiologia 806: 47–65.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Carlos Fernando Sanches, Sonia Maria R. Carregari and Baltasar Fernandes Garcia Neto for all assistance with the experiment and analysis.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Santini.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling editor: Andre Andrian Padial

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santini, R., de Lima, J.P., Gratão, P.L. et al. Evaluation of growth and oxidative stress as indicative of salinity tolerance by the invasive tropical aquatic macrophyte tanner grass. Hydrobiologia 849, 1261–1271 (2022). https://doi.org/10.1007/s10750-021-04787-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04787-4

Keywords

Navigation