Skip to main content
Log in

Shifting nutrient limitation and eutrophication effects in marsh vegetation across estuarine salinity gradients

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

In light of widespread coastal eutrophication, identifying which nutrients limit vegetation and the community consequences when limitation is relaxed is critical to maintaining the health of estuarine marshes. Studies in temperate salt marshes have generally identified nitrogen (N) as the primary limiting nutrient for marsh vegetation, but the limiting nutrient in low salinity tidal marshes is unknown. I use a 3-yr nutrient addition experiment in mid elevation,Spartina patens dominated marshes that vary in salinity along two estuaries in southern Maine to examine variation in nutrient effects. Nutrient limitation shifted across estuarine salinity gradients; salt and brackish marsh vegetation was N limited, while oligohaline marsh vegetation was co-limited by N and phosphorus (P). Plant tissue analysis ofS. patens showed plants in the highest salinity marshes had the greatest percent N, despite N limitation, suggesting that N limitation in salt marshes is partially driven by a high demand for N to aid in salinity tolerance. Fertilization had little effect on species composition in monospecificS. patents stands of salt and brackish marshes, but N+P treatments in species-rich oligohaline marshes significantly altered community composition, favoring dominance by high aboveground producing plants. Eutrophication by both N and P has the potential to greatly reduce the characteristic high diversity of oligohaline marshes. Inputs of both nutrients in coastal watersheds must be managed to protect the diversity and functioning of the full range of estuarine marshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aerts, R. andF. Berendse. 1988. The effect of increased nutrient availability on vegetation dynamics in wet heathlands.Vegetatio 76:63–69.

    Google Scholar 

  • Bedford, B. L., M. R. Walbridge, andA. Aldous. 1999. Patterns in nutrient availability and plant diversity of temperate North American wetlands.Ecology 80:2151–2169.

    Google Scholar 

  • Bertness, M. D., P. J. Ewanchuk, andB. R. Silliman. 2002. Anthropogenic modification of New England salt marsh landscapes.Proceedings of the National Academy of Sciences of the United States of America 99:1395–1398.

    Article  CAS  Google Scholar 

  • Bowden W. B., C. J. Vorosmarty, J. T. Morris, B. J. Peterson, J. E. Hobbie, P. A. Steudler, andB. Moore. 1991. Transport and processing of nitrogen in a tidal fresh-water wetland.Water Resources Research 27:389–408.

    Article  CAS  Google Scholar 

  • Bradley, P. M., andJ. T. Morris. 1990. Influence of oxygen and sulfide concentration on nitrogen uptake kinetics inSpartina alterniflora.Ecology 71:282–287.

    Article  CAS  Google Scholar 

  • Bradley, P. M., andJ. T. Morris. 1991. The influence of salinity on the kinetics of NH4+ uptake inSpartina alterniflora.Oecologia 85: 375–380.

    Article  Google Scholar 

  • Chambers, R. M., L. A. Meyerson, andK. Saltonstall. 1999. Expansion ofPhragmites australis into tidal wetlands of North America.Aquatic Botany 64:261–273.

    Article  Google Scholar 

  • Childers, D. L., R. F. Doren, R. Jones, G. B. Noe, M. Rugge, andL. J. Scinto. 2003. Decadal change in vegetation and soil phosphorus pattern across the everglades landscape.Journal of Environmental Quality 32:344–362.

    CAS  Google Scholar 

  • Clarke, K. R., andR. N. Corley. 2001. PRIMER v5: User manual/tutorial. PRIMER-E, Plymouth, England.

    Google Scholar 

  • Crain, C. M., B. R. Silliman, S. L. Bertness, andM. D. Bertness. 2004. Physical and biotic drivers of plant distribution across estuarine salinity gradients.Ecology 85:2539–2549.

    Article  Google Scholar 

  • Doering P. H., C. A. Oviatt, B. L. Nowicki, E. G. Klos, andL. W. Reed. 1995. Phosphorus and nitrogen limitation of primary production in a simulated estuarine gradient.Marine Ecology-Progress Series 124:271–287.

    Article  CAS  Google Scholar 

  • Emery, N. C., P. J. Ewanchuk, andM. D. Bertness. 2001. Competition and salt-marsh plant zonation: Stress tolerators may be dominant competitors.Ecology 82:2471–2485.

    Google Scholar 

  • Galloway, J. N., F. J. Dentener, D. G. Capone, E. W. Boyer, R. W. Howarth, S. P. Seitzinger, G. P. Asner, C. C. Cleveland, P. A. Green, E. A. Holland, D. M. Karl, A. F. Michaels, J. H. Porter, A. R. Townsend, andC. J. Vorosmarty. 2004. Nitrogen cycles: Past, present, and future.Biogeochemistry 70:153–1226.

    Article  CAS  Google Scholar 

  • Haines, B. L., andE. L. Dunn. 1976. Growth and resource allocation responses ofSpartina alterniflora Loisel to three levels of Amnonium-N-N, Fe and NaCl in solution culture.Botanical Gazettee 137:224–230.

    Article  CAS  Google Scholar 

  • Howarth, R. W.. 1988. Nutrient limitation of net primary production in marine ecosystems.Annual Review of Ecology and Systematics 19:89–110.

    Article  Google Scholar 

  • Howarth, R. W., D. Anderson, J. Cloern, C. Elfring, C. Hopkinson, B. Lapointe, T. Malone, N. Marcus, K. McGlathery, A. Sharpley, andD. Walker. 2000. Nutrient pollution of coastal rivers, bays, and seas.Issues in Ecology 7:1–15.

    Google Scholar 

  • Howarth, R. W., andR. Marino. 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over 3 decades.Limnology and Oceanography 51: 364–376.

    Article  CAS  Google Scholar 

  • Howarth, R. W., A. Sharpley, andD. Walker. 2002. Sources of nutrient pollution to coastal waters in the United States: Implications for achieving coastal water quality goals.Estuaries 25:656–676.

    Article  CAS  Google Scholar 

  • Jefferies, R. L. 1981. Osmotic adjustment and the response of halophytic plants to salinity.Bioscience 31:42–46.

    Article  CAS  Google Scholar 

  • Jefferies, R. L., andN. Perkins. 1977. The effects on the vegetation of the additions of inorganic nutrients to salt marsh soils at Stifkey, Norfolk.Journal of Ecology 65:867–882.

    Article  CAS  Google Scholar 

  • Jordan, T. E., D. L. Correll, andD. E. Weller. 1997. Effects of agriculture on discharges of nutrients from coastal plain watersheds of Chesapeake Bay.Journal of Environmental Quality 26:836–848.

    CAS  Google Scholar 

  • Keddy, P.. 2000. Wetland Ecology: Principles and Conservation, 1 st edition. Cambridge University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Kiehl, K., P. Esselink, andJ. P. Bakker. 1997. Nutrient limitation and plant species composition in temperate salt marshes.Oecologia 111:325–330.

    Article  Google Scholar 

  • Koch, M. S., I. A. Mendelssohn, andK. L. McKee. 1990. Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes.Limnology and Oceanography 35:399–408.

    CAS  Google Scholar 

  • Koerselman, W., andA. F. M. Meuleman. 1996. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation.Journal of Applied Ecology 33:1441–1450.

    Article  Google Scholar 

  • Levine, J. M., J. S. Brewer, andM. D. Bertness. 1998. Nutrients. competition and plant zonation in a New England salt marsh.Journal of Ecology 86:285–292.

    Article  Google Scholar 

  • Minchinton, T. E., andM. D. Bertness. 2003. Disturbancemediated competition and the spread ofPhragmites australis in a coastal marsh.Ecological Applications 13:1400–1416.

    Article  Google Scholar 

  • Mitsch, W. J., andJ. G. Gosselink. 2000. Wetlands, 3rd edition. John Wiley and Sons, New York.

    Google Scholar 

  • Mitsch, W. J. A. J. Horne, andR. W. Nairn. 2000. Nitrogen and phosphorus retention in wetlands-ecological approaches to solving excess nutrient problems.Ecological Engineering 14:1–7.

    Google Scholar 

  • Morris, J. T.. 1991. Effects of nitrogen loading on wetland ecosystems with particular reference to atmospheric deposition.Annual Review of Ecology and Systematics 22:257–279.

    Article  Google Scholar 

  • Morse, J. L., J. P. Megonigal, andM. R. Walbridge. 2004. Sediment nutrient accumulation and nutrient availability in two tidal freshwater marshes along the Mattaponi River, Virginia, USA.Biogeochemistry 69:175–206.

    Article  CAS  Google Scholar 

  • National Research Council (NRC) 2000. Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution. National Academy Press, Washington, D.C.

    Google Scholar 

  • Newman, S., J. B. Grage, andJ. W. Koebel. 1996. Effects of nutrients and hydroperiod onTypha, Cladium, andEleocharis: Implications for Everglades restoration.Ecological Applications 6: 774–783.

    Article  Google Scholar 

  • Ngai, J. T., andR. L. Jefferies. 2004. Nutrient limitation of plant growth and forage quality in Arctic coastal marshes.Journal of Ecology 92:1001–1010.

    Article  Google Scholar 

  • Nixon, S. W.. 1995. Coastal marine eutrophication-A definition, social causes, and future concerns.Ophelia 41:199–219.

    Google Scholar 

  • Odum, W. E.. 1988. The comparative ecology of tidal freshwater and salt marshes.Annual Review of Ecology and Systematics 19:147–176.

    Article  Google Scholar 

  • Osgood, D. T., andJ. C. Zieman. 1993. Factors controlling abovegroundSpartina alterniflora (smooth cordgrass) tissue element composition and production in different age barrier island marshes.Estuaries 16:815–826.

    Article  CAS  Google Scholar 

  • Osgood, D. T., andJ. C. Zieman. 1998. The influence of subsurface hydrology on nutrient supply and smooth cordgrass (Spartina allerniflora) production in a developing barrier island marsh.Estuaries 21:767–783.

    Article  CAS  Google Scholar 

  • Paludan, C., andJ. T. Morris. 1999. Distribution and speciation of phosphorus along a salinity gradient in intertidal marsh sediments.Biogeochemistry 45:197–221.

    Google Scholar 

  • Redfield, A. C.. 1958. The biological control of chemical factors in the environment.American Scientist 46:205–222.

    CAS  Google Scholar 

  • Richardson, C. J., G. M. Ferrell, andP. Vaithiyanathan. 1999. Nutrient effects on stand structure, resorption efficiency, and secondary compounds in Everglades sawgrass.Ecology 80:2182–2192.

    Article  Google Scholar 

  • SAS. 2001. JMP statistical software package, version 4. SAS Institute, Inc., Cary, North Carolina.

    Google Scholar 

  • Silliman, B. R., andM. D. Bertness. 2004. Shoreline development drives invasion ofPhragmites australis and the loss of plant diversity on New England salt marshes.Conservation Biology 18: 1424–1434.

    Article  Google Scholar 

  • Silliman, B. R. andJ. C. Zieman. 2001. Top-down control ofSpartina alterniflora production by periwinkle grazing in a Virginia salt marsh.Ecology 82:2830–2845.

    Google Scholar 

  • Stribling, J. M., andJ. C. Cornwell. 2001. Nitrogen, phosphorus, and sulfur dynamics in a low salinity marsh system dominated bySpartina alterniflora Wetlands 21:629–638.

    Article  Google Scholar 

  • Sundareshwar, P. V. andJ. T. Morris. 1999. Phosphorus sorption characteristics of intertidal marsh sediments along an estuarine salinity gradient.Limnology and Oceanography 44: 1693–1701.

    Article  CAS  Google Scholar 

  • Sundareshwar, P. V., J. T. Morris, E. K. Koepfler, andB. Fornwalt. 2003. Phosphorus limitation of coastal ecosystem processes.Science 299:563–565.

    Article  CAS  Google Scholar 

  • Tilman, D. 1987. Secondary succession and the pattern of plant dominance along experimental nitrogen gradients.Ecological Monographs 57:189–214.

    Article  Google Scholar 

  • Valiela, I., andJ. M. Teal. 1974. Nutrient limitation in salt marsh vegetation, p. 547–563.In R. J. Reimold and W. H. Queen (eds.), Ecology of Halophytes, Academic Press, New York.

    Google Scholar 

  • van Wijnen, H. J., andJ. P. Bakker. 1999. Nitrogen and phosphorus limitation in a coastal barrier salt marsh: The implications for vegetation succession.Journal of Ecology 87:265–272.

    Article  Google Scholar 

  • Verhoeven, J. T. A., W. Kuesselman, andA. F. M. Meuleman. 1996. Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: Relations with atmospheric inputs and management regimes.Trends in Ecology and Evolution 11:494–497.

    Article  Google Scholar 

  • Vitousek, P. M.. 1994. Beyond global warming-Ecology and global change,Ecology 75:1861–1876.

    Article  Google Scholar 

  • Vitousek, P. M., J. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, andD. Tilman. 1997. Human alteration of the global nitrogen cycle: Causes and consequences.Issues in Ecology 1:1–15.

    Google Scholar 

  • Vitousek, P. M. andR. W. Howarth. 1991. Nitrogen limitation on land and in the sea-How can it occur.Biogeochemistry 13:87–115.

    Article  Google Scholar 

  • Wigand, C., G. B. Thursby, R. A. McKinney, andA. F. Santos. 2004. Response ofSpartina patens to dissolved inorganic nutrient additions in the field.Journal of Coastal Research 45: 134–149.

    Article  Google Scholar 

  • Yates, P. andJ. Sheridan. 1983. Estimating the effectiveness of vegetated floodplains/ wetlands as nitrate-nitrite and orthophosphorus filters.Agriculture, Ecosystems and Environment 6:303–314.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caitlin Mullan Crain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crain, C.M. Shifting nutrient limitation and eutrophication effects in marsh vegetation across estuarine salinity gradients. Estuaries and Coasts: J ERF 30, 26–34 (2007). https://doi.org/10.1007/BF02782964

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02782964

Keywords

Navigation