Skip to main content
Log in

Disentangling the mechanisms related to the reduction of aquatic habitat size on predator–prey interactions

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Reductions in aquatic habitat size facilitate encounters between predators and prey by reducing the height of the water column and the water volume. Here, we proposed to disentangle the effects of these mechanisms on predation rates and parameters of functional response curves of predators. We paired active-search predators (Buenoa, Hemiptera) or ambush predators (Pantala and Lestes, Odonata) with prey of different mobility types (Argyrodiaptomus, Copepoda; Culex, Diptera). Three treatments were established: high water column height and high water volume (H + V +), low water column height and high water volume (H − V +), and low water column height and low water volume (H − V−). We used contrast analysis to separate the effects of water column height (H + , H−) and water volume (V + , V−). Predation rates were higher in V− than in V + for Pantala and Buenoa consuming Argyrodiaptomus. In addition, we observed an increase in attack rates and a decrease in handling time in V− in relation to V + for Pantala and Lestes consuming Argyrodiaptomus. We concluded that reduction in the water volume was main responsible factor for the changes in predator–prey interactions. These changes depended on the prey behavior and predator foraging modes: ambush predators were the most benefited, and highly mobile prey were the most consumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available in the Zenodo repository, https://doi.org/10.5281/zenodo.5879944.

Code availability

Not applicable.

References

  • Amundrud, S. L., S. A. Clay-Smith, B. L. Flynn, K. E. Higgins, M. S. Reich, D. R. H. Wiens & D. S. Srivastava, 2019. Drought alters the trophic role of an opportunistic generalist in an aquatic ecosystem. Oecologia 189: 733–744.

    Article  PubMed  Google Scholar 

  • Brooks, A. C., P. N. Gaskell & L. L. Maltby, 2009. Sublethal effects and predator-prey interactions: implications for ecological risk assessment. Environmental Toxicology and Chemistry 28: 2449–2457.

    Article  CAS  PubMed  Google Scholar 

  • Buxton, M., R. N. Cuthbert, T. Dalu, C. Nyamukondiwa & R. J. Wasserman, 2020. Predator density modifies mosquito regulation in increasingly complex environments. Pest Management Science 76: 2079–2086.

    Article  CAS  PubMed  Google Scholar 

  • Chandra, G., S. K. Mandal, A. K. Ghosh, D. Das, S. S. Banerjee & S. Chakraborty, 2008. Biocontrol of larval mosquitoes by Acilius sulcatus (Coleoptera: Dytiscidae). BMC Infectious Diseases 8: 138.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coblentz, K. E. & J. P. DeLong, 2020. Predator-dependent functional responses alter the coexistence and indirect effects among prey that share a predator. Oikos 129: 1404–1414.

    Article  Google Scholar 

  • Crowley, P. H., 1979. Behavior of zygopteran nymphs in a simulated weed bed. Odonatologica 8: 91–101.

    Google Scholar 

  • Cuthbert, R. N., D. Tatenda, R. J. Wasserman, A. Callaghan, O. L. F. Weyl & J. T. A. Dick, 2019. Using functional responses to quantify notonectid predatory impacts across increasingly complex environments. Acta Oecologica 95: 116–119.

    Article  Google Scholar 

  • Cuthbert, R. N., R. J. Wasserman, T. Dalu, H. Kaiser, O. L. F. Weylz, J. T. A. Dick, A. Sentis, M. W. McCoy & M. E. Alexander, 2020. Influence of intra- and interspecific variation in predator–prey body size ratios on trophic interaction strengths. Ecology and Evolution 10: 5946–5962.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalal, A., R. N. Cuthbert, J. T. Dick & S. Gupta, 2019. Water depth-dependent notonectid predatory impacts across larval mosquito ontogeny. Pest Management Science 75: 2610–2617.

    Article  CAS  PubMed  Google Scholar 

  • Dalal, A., R. N. Cuthbert, J. T. Dick, A. Sentis, C. Laverty, D. Barrios-O’Neill, N. O. Perea, A. Callaghan & S. Gupta, 2020. Prey size and predator density modify impacts by natural enemies towards mosquitoes. Ecological Entomology 45: 423–433.

    Article  Google Scholar 

  • Daugaard, U., O. L. Petchey & F. Pennekamp, 2019. Warming can destabilize predator–prey interactions by shifting the functional response from Type III to Type II. Journal of Animal Ecology 88: 1575–1586.

    Article  Google Scholar 

  • De Clercq, P., J. Mohaghegh & L. Tirry, 2000. Effect of host plant on the functional response of the predator Podisus nigrispinus (Heteroptera: Pentatomide). Biological Control 18: 65–70.

    Article  Google Scholar 

  • Dewson, Z. S., A. B. James & R. G. Death, 2007. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. Journal of the North American Benthological Society 26: 401–415.

    Article  Google Scholar 

  • Dick, J. T. A., M. E. Alexander, J. M. Jeschke, A. Ricciardi, H. J. MacIsaac, T. B. Robinson, S. Kumschick, O. L. F. Weyl, A. M. Dunn, M. J. Hatcher, R. A. Paterson, K. D. Farnsworth & D. M. Richardson, 2014. Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biological Invasions 16: 735–753.

    Article  Google Scholar 

  • Faria, L. D. B., W. A. C. Godoy & L. A. Trinca, 2004. Dynamics of handling time and functional response by larvae of Chrysomya albiceps (Dipt., Calliphoridae) on different prey species. Journal of Applied Entomology 128: 432–436.

    Article  Google Scholar 

  • Frances, D. N. & S. J. McCauley, 2018. Warming drives higher rates of prey consumption and increases rates of intraguild predation. Oecologia 187: 585–596.

    Article  PubMed  Google Scholar 

  • Fulan, J. A. & M. R. dos Anjos, 2015. Predation by Erythemis nymphs (Odonata) on Chironomidae (Diptera) and Elmidae (Coleoptera) in different conditions of habitat complexity. Acta Limnologica Brasiliensia 27: 454–458.

    Article  Google Scholar 

  • Greene, C. H., 1986. Patterns of prey selection: Implications of predator foraging tactics. The American Naturalist 128: 824–839.

    Article  Google Scholar 

  • Hammill, E., O. L. Petchey & B. R. Anholt, 2010. Predator functional response changed by induced defenses in prey. The American Naturalist 176: 723–731.

    Article  PubMed  Google Scholar 

  • Hammil, E., T. B. Atwood, P. Corvolan & D. S. Srivastava, 2015. Behavioural responses to predation may explain shifts in community structure. Freshwater Biology 60: 125–135.

    Article  Google Scholar 

  • Hassell, M. P., 1978. The dynamics of arthropod predator-prey systems, Princeton University Press, Princeton:

    Google Scholar 

  • Holling, C. S., 1959. Some characteristics of simple types of predation and parasitism. The Canadian Entomologist 91: 385–398.

    Article  Google Scholar 

  • Holling, C. S., 1965. The functional response of predators to prey density and its role in mimicry and population regulation. Memoirs of the Entomological Society of Canada 97: 5–60.

    Article  Google Scholar 

  • Hothorn, T., F. Bretz & P. Westfall, 2008. Simultaneous inference in general parametric models. Biometrical Journal 50: 346–363.

    Article  PubMed  Google Scholar 

  • Jeschke, J. M., M. Kopp & R. Tollrian, 2002. Predator functional responses: discriminating between handling and digesting prey. Ecological Monographs 72: 95–112.

    Article  Google Scholar 

  • Juliano, S. A. & M. E. Gravel, 2002. Predation and the evolution of prey behavior: an experiment with tree hole mosquitoes. Behavioral Ecology 13: 301–311.

    Article  Google Scholar 

  • Kiørboe, T., 2010. What makes pelagic copepods so successful? Journal of Plankton Research 33: 677–685.

    Article  Google Scholar 

  • Klecka, J. & D. S. Boukal, 2013. Foraging and vulnerability traits modify predator–prey body mass allometry: freshwater macroinvertebrates as a case study. Journal of Animal Ecology 82: 1031–1041.

    Article  Google Scholar 

  • Klecka, J. & D. S. Boukal, 2014. The effect of habitat structure on prey mortality depends on predator and prey microhabitat use. Oecologia 176: 183–191.

    Article  PubMed  Google Scholar 

  • Kolar, V., D. S. Boukal & A. Sentis, 2019. Predation risk and habitat complexity modify intermediate predator feeding rates and energetic efficiencies in a tri-trophic system. Freshwater Biology 64: 1480–1491.

    Article  Google Scholar 

  • Laverty, C., J. T. A. Dick, M. E. Alexander & F. E. Lucy, 2015. Differential ecological impacts of invader and native predatory freshwater amphipods under environmental change are revealed by comparative functional responses. Biological Invasions 17: 1761–1770.

    Article  Google Scholar 

  • Ledger, M. E., L. E. Brown, F. K. Edwards, A. M. Milner & G. Woodward, 2013. Drought impacts on the structure and functioning of complex food webs. Nature Climate Change 3: 223–227.

    Article  Google Scholar 

  • Li, Y., B. C. Rall & G. Kalinkat, 2018. Experimental duration and predator satiation levels systematically affect functional response parameters. Oikos 127: 590–598.

    Article  Google Scholar 

  • McHugh, P. A., R. M. Thompson, H. S. Greig, H. J. Warburton & A. R. McIntosh, 2015. Habitat size influences food web structure in drying streams. Ecography 38: 700–712.

    Article  Google Scholar 

  • McMeans, B. C., K. S. McCann & M. Humphries, 2015. Food web structure in temporally-forced ecosystems. Trends in Ecology & Evolution 30: 662–672.

    Article  Google Scholar 

  • Mondal, R. P., G. Chandra, S. Bandyopadhyay & A. Ghosh, 2017. Effect of temperature and search area on the functional response of Anisops sardea (Hemiptera: Notonectidae) against Anopheles stephensi in laboratory bioassay. Acta Tropica 166: 262–267.

    Article  PubMed  Google Scholar 

  • Murdoch, W. W., 1969. Switching in general predators: experiments on predator specificity and stability of prey populations. Ecological Monographs 39: 335–354.

    Article  Google Scholar 

  • Paterson, R. A., J. T. A. Dick, D. W. Pritchard, M. Ennis, M. J. Hatcher & A. M. Dunn, 2015. Predicting invasive species impacts: a community module functional response approach reveals context dependencies. Journal of Animal Ecology 84: 453–463.

    Article  Google Scholar 

  • Previatelli, D. & E. N. Santos-Silva, 2007. A new Argyrodiaptomus (Copepoda: Calanoida: Diaptomidae) from the southwestern Brazilian Amazon. Zootaxa 1518: 1–29.

    Article  Google Scholar 

  • Pritchard, G., 1965. Prey Capture by Dragonfly Larvae (Odonata, Anisoptera). Canadian Journal of Zoology 43: 271–289.

    Article  Google Scholar 

  • Pritchard, D. W., R. A. Paterson, H. C. Bovy & D. Barrios-O’Neill, 2017. FRAIR: An R package for fitting and comparing consumer functional responses. Methods in Ecology and Evolution 8: 1528–1534.

    Article  Google Scholar 

  • R Core Team, 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

  • Roland, F., V. L. M. Huszar, V. F. Farjalla, A. Enrich-Prast, A. Amado & J. P. H. B. Ometto, 2012. Climate change in Brazil: perspective on the biogeochemistry of inland waters. Brazilian Journal of Biology 72: 709–722.

    Article  CAS  Google Scholar 

  • Rosset, V., A. Ruhi, M. T. Bogan & T. Datry, 2017. Do lentic and lotic communities respond similarly to drying? Ecosphere 8: 01809.

    Article  Google Scholar 

  • Saha, N., G. Aditya, S. Banerjee & G. K. Saha, 2012. Predation potential of odonates on mosquito larvae: implications for biological control. Biological Control 63: 1–8.

    Article  Google Scholar 

  • Sarnelle, O. & A. E. Wilson, 2008. Type III functional response in Daphnia. Ecology 89: 1723–1732.

    Article  PubMed  Google Scholar 

  • Shaalan, E. A. & D. V. Canyon, 2009. Aquatic insect predators and mosquito control. Tropical Biomedicine 26: 223–261.

    PubMed  Google Scholar 

  • Sodré, E. d. O. & R. L. Bozelli, 2019. How planktonic microcrustaceans respond to environment and affect ecosystem: a functional trait perspective. International Aquatic Research 11: 207–223.

    Article  Google Scholar 

  • Sundell, J., J. A. Eccard, R. Tiilikainen & H. Ylönen, 2003. Predation rate, prey preference and predator switching: experiments on voles and weasels. Oikos 101: 615–623.

    Article  Google Scholar 

  • van Uitregt, V. O., T. P. Hurst & R. S. Wilson, 2013. Greater costs of inducible behavioural defences at cooler temperatures in larvae of the mosquito, Aedes notoscriptus. Evolutionary Ecology 27: 13–26.

    Article  Google Scholar 

  • Varshini, R. A. & M. Kanagappan, 2014. Effect of quantity of water on the feeding efficiency of dragonfly Nymph Bradynopyga geminata (Rambur). Journal of Entomology and Zoology Studies 2: 249–252.

    Google Scholar 

Download references

Acknowledgements

RMGC and JLSF are grateful to Vale S.A. and the Coordination of Superior Level Staff Improvement (CAPES) for Master and PhD scholarships, respectively. VFF is partially supported by a CNPq productivity grant (Process 310119/2018-9).

Funding

This research was funded by Vale SA.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived the ideas and designed the methodology; RMGC and JLSF collected and analyzed the data; RMGC led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Vinicius F. Farjalla.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest in this research.

Additional information

Handling editor: Marcelo S. Moretti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2403 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, R.M.G., Ferro, J.L.S. & Farjalla, V.F. Disentangling the mechanisms related to the reduction of aquatic habitat size on predator–prey interactions. Hydrobiologia 849, 1207–1219 (2022). https://doi.org/10.1007/s10750-021-04781-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04781-w

Keywords

Navigation