Skip to main content
Log in

Three biodiversity facets and assembly mechanism of the oligochaete community in the karst spring environment

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Springs as ecotones represent a suitable environment for testing hypotheses regarding the principles of a benthic community assembly. In this study, we aimed to uncover the processes which form the oligochaete assemblages in the karst springs environment. To uncover the assembly mechanism of the oligochaete community, we applied a multidimensional approach which included taxonomic, trait, and phylogenetic data. In total, 37 aquatic/semiaquatic oligochaete taxa were found. Null model analyses did not uncover any clear evidence of a nonrandom functional/phylogenetic structure of spring oligochaete fauna. Although, for all of the springs, the observed functional/phylogenetic diversity did not differ from that of null models, the position of the majority of observed values under the mean value of null models suggests that environmental filtering may be a more important driver in the community assembly. The environmental parameters that significantly drive the three biodiversity facets of the oligochaetes were spring temperature (functional and phylogenetic diversity), trophic status (taxonomic a phylogenetic diversity), spring connection (taxonomic diversity), and substrate, as well as oxygen conditions (functional diversity). Our findings provide, therefore, robust evidence that the ecological drivers of biodiversity differ among different scales, and future research should apply the multifacet approach to determine biodiversity conservation management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request. The Oligochaeta dataset named DS-OLKS is available at BOLD systems: https://doi.org/10.5883/DS-OLKS.

References

  • Achurra, A. & P. Rodriguez, 2008. Biodiversity of groundwater oligochaetes from a karst unit in northern Iberian Peninsula: ranking subterranean sites for conservation management. Hydrobiologia 605: 159–171.

    Article  Google Scholar 

  • Akaike, H., 1978. On Newer Statistical Approaches to Parameter Estimation and Structure Determination. IFAC Proc. 11: 1877–1884.

    Article  Google Scholar 

  • Anderson, M. J., K. E. Ellingsen & B. H. McArdle, 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letter 9: 683–693.

    Article  Google Scholar 

  • Arrhenius, O., 1921. Species and Area. Journal of Ecology 9: 95–99.

    Article  Google Scholar 

  • Baker, J. L., K. L. Campbell, H. P. Johnson & J. J. Hanway, 1975. Nitrate, phosphorus and sulphate in subsurface dranage water. Journal of Environmental Quality 4: 406–412.

    Article  CAS  Google Scholar 

  • Barquín, J. & R. G. Death, 2004. Patterns of invertebrate diversity in streams and freshwater springs in Northern Spain. Archiv Fur Hydrobiology 161: 329–350.

    Article  Google Scholar 

  • Barquín, J. & R. G. Death, 2006. Spatial patterns of macroinvertebrate diversity in New Zealand springbrooks and rhithral streams. Journal of the North American Benthological Society 25: 768–786.

    Article  Google Scholar 

  • Bojková, J., J. Schenková, M. Horsák & M. Hájek, 2011. Species richness and composition patterns of clitellate (Annelida) taxocenoses in the treeless spring fens: the effect of water chemistry and substrate. Hydrobiologia 677: 159–171.

    Article  Google Scholar 

  • Bottazzi, E., M. C. Bruno, V. Pieri, A. Di Sabatino, L. Silveri, M. Carolli & G. Rossetti, 2011. Spatial and seasonal distribution of invertebrates in Northern Apennine rheocrene springs. Journal of Limnology 70: 77–92.

    Article  Google Scholar 

  • Boulton, A. J., S. Findlay, P. Marmonier, E. H. Stanley & H. M. Valett, 1998. The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics 29: 59–81.

    Article  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2002. Model selection and multimodel inference: a practical information-theoretic approach, 2nd ed. Springer, New York:

    Google Scholar 

  • Cadotte, M., C. H. Albert & S. C. Walker, 2013. The ecology of differences: assessing community assembly with trait and evolutionary distances. Ecology Letters 16: 1234–1244.

    Article  PubMed  Google Scholar 

  • Cantonati, M., R. Gerecke & E. Bertuzzi, 2006. Springs of the Alps - Sensitive ecosystems to environmental change: From biodiversity assessments to long-term studies. Hydrobiologia 562: 59–96.

    Article  CAS  Google Scholar 

  • Cavender-Bares, J., K. H. Kozak, P. V. A. Fine & S. W. Kembel, 2009. The merging of community ecology and phylogenetic biology. Ecology Letter 12: 693–715.

    Article  Google Scholar 

  • Charles, D. F., F. W. Acker, D. D. Hart, C. W. Reimer & P. B. Cotter, 2006. Large-scale regional variation in diatom–water chemistry relationships: rivers of the eastern United States. Hydrobiologia 561: 27–57.

    Article  CAS  Google Scholar 

  • Chase, J. M. & M. A. Leibold, 2003. Ecological Niches: Linking Classical and Contemporary Approaches, University of Chicago Press, Chicago:

    Book  Google Scholar 

  • Chiarucci, A., I. Bonini & L. Fattorini, 2003. Community dynamics of serpentine vegetation in relation to nutrient addition and climatic variability. Journal of Mediterranean Ecology 4: 23–30.

    Google Scholar 

  • Collado, R. & R. M. Schmelz, 2001. Oligochaete distribution patterns in two German hardwater lakes of different trophic state. Limnologica – Ecology and Management of Inland Water 31: 317–328.

  • Collier, K. J. & B. J. Smith, 2006. Distinctive invertebrate assemblages in rockface seepages enhance lotic biodiversity in northern New Zealand. Biodiversity and Conservation 15: 3591–3616.

    Article  Google Scholar 

  • Cross, W. F., J. M. Hood, J. P. Benstead, A. D. Huryn & D. Nelson, 2015. Interactions between temperature and nutrients across levels of ecological organization. Global Change Biology 21: 1025–1040.

    Article  PubMed  Google Scholar 

  • Dózsa-Farkas, K., 2019. Enchytraeids of Hungary (Annelida: Clitellata: Enchytraeidae). Pedozoologica Hungarica 7. Eötvös University Press, Budapest.

  • Dumnicka, E., 1976. Oligochaetes (Oligochaeta) of some streams of the High Tatra Mts. and of the River Bialka Tatrzanska. Acta Hydrobiologica 18: 305–315.

    Google Scholar 

  • Dumnicka, E., 1982. Stream ecosystems in mountain grassland (West Carpathians) 9. Oligochaeta. Acta Hydrobiologica 24: 391–398.

    Google Scholar 

  • Dumnicka, E., 1994. Communities of oligochaetes in mountain streams of Poland. Hydrobiologia 278: 107–110.

    Article  Google Scholar 

  • Dumnicka, E., 2000. Studies on Oligochaeta taxocens in streams, interstitial and cave waters of southern Poland. Acta Zoologica Cracoviensia 43: 339–392.

    Google Scholar 

  • Dumnicka, E., 2006. Composition and abundance of oligochaetes (Annelida: Oligochaeta) in springs of Kraków-Częstochowa Upland (Southern Poland): effect of spring encasing and environmental factors. Polish Journal of Ecology 54: 231–242.

    Google Scholar 

  • Dumnicka, E., 2014. Stygobitic oligochaetes (Annelida, Clitellata) in Poland with remarks on their distribution in Central Europe. Subterranean Biology 14: 15–24.

    Article  Google Scholar 

  • Dumnicka, E. & J. Galas, 2002. Factors affecting the distribution of Oligochaeta in small high mountain ponds (Tatra Mts, Poland). Archiv Fur Hydrobiology 156: 121–133.

    Article  Google Scholar 

  • Dumnicka, E. & A. Boggero, 2007. Freshwater Oligochaeta in two mountain ranges in Europe: the Tatra Mountains (Poland) and the Alps (Italy). Fundamental and Applied Limnology / Archiv Für Hydrobiologie 168: 231–242.

    Article  Google Scholar 

  • Dumnicka, E., J. Galas & P. Koperski, 2007. Benthic invertebrates in karst springs: does substratum or location define communities? International Review of Hydrobiology 92: 452–464.

    Article  Google Scholar 

  • Efron, B. & R. Thisted, 1976. Estimating the number of unseen species: How many words did Shakespeare know? Biometrika 63: 435–447.

    Google Scholar 

  • Emerson, B. C. & R. G. Gillespie, 2008. Phylogenetic analysis of community assembly and structure over space and time. Trends in Ecology and Evolution 23: 619–630.

    Article  PubMed  Google Scholar 

  • Giani, N., B. Sambugar, P. Rodríguez & E. Martínez-Ansemil, 2001. Oligochaetes in southern European groundwater: new records and an overview. Hydrobiologia 463: 65–74.

    Article  Google Scholar 

  • Giani, N., B. Sambugar, E. Martínez-Ansemil, P. Martin & R. M. Schmelz, 2011. The groundwater oligochaetes (Annelida, Clitellata) of Slovenia. Subterranean Biology 9: 85–102.

    Article  Google Scholar 

  • Gillespie, R. G., 2004. Community assembly through adaptive radiation in Hawaiian spiders. Science 303: 356–359.

    Article  CAS  PubMed  Google Scholar 

  • Faith, D. P., 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61: 1–10.

    Article  Google Scholar 

  • Fox, J. & S. Weisberg, 2018. Visualizing fit and lack of fit in complex regression models with predictor effect plots and partial residuals. Journal of Statistical Software 87: 1–27.

    Article  Google Scholar 

  • Fox, J. & S. Weisberg, 2019. An R Companion to Applied Regression (3rd ed.). Thousand Oaks CA, Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion

  • Glazier, D. S., 1991. The fauna of North American temperate cold springs: patterns and hypotheses. Freshwater Biology 26: 527–542.

    Article  Google Scholar 

  • Glazier, D. S., 1998. Springs as model systems for ecology and evolutionary biology: a case study of Gammarus minus Say (Amphipoda) in mid-Appalachian springs differing in pH and ionic content. In Botosaneanu, L. (ed), Studies in Crenobiology: The Biology of Springs and Springbrooks Backhuys Publishers, Leiden: 49–62.

    Google Scholar 

  • Gotelli, N. J., 2000. Null model analysis of species co-occurrence patterns. Ecology 81: 2606–2621.

    Article  Google Scholar 

  • GRASS Development Team, 2012. Geographic Resources Analysis Support System (GRASS GIS) Software. Open Source Geospatial Foundation, USA. http://grass.osgeo.org/

  • Hanson, C. A., J. A. Fuhrman, M. C. Horner-Devine & J. B. Martiny, 2012. Beyond biogeographic patterns: processes shaping the microbial landscape. Nature Reviews Microbiology 10: 497–506.

    Article  CAS  PubMed  Google Scholar 

  • Haviarová, D., 2007. Výskum krasových vôd z pohľadu ochrany jaskýň na Slovensku. Podzemná Voda 13: 153–161.

    Google Scholar 

  • Heltshe, J. F. & N. E. Forrester, 1983. Estimating species richness using the Jackknife. Biometrics 39: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Herben, T. & D. E. Goldberg, 2014. Community assembly by limiting similarity vs. competitive hierarchies: testing the consequences of dispersion of individual traits. Journal of Ecology 102: 156–166.

    Article  Google Scholar 

  • Hlaváč, V., P. Anděl, J. Matoušová, I. Dostál, M. Strnad, 2019. Wildlife and Traffic in the Carpathians. Guidelines how to minimize impact of transport infrastructure development on nature in the Carpathian countries. Danube Transnational Programme TRANSGREEN Project. The State Nature Conservancy of the Slovak Republic, Banská Bystrica.

  • Horsák, M., V. Rádková, V. Syrovátka, J. Bojková, V. Křoupalová, J. Schenková & J. Zajacová, 2015. Drivers of aquatic macroinvertebrate richness in spring fens in relation to habitat specialization and dispersal mode. Journal of Biogeography 42: 2112–2121.

    Article  Google Scholar 

  • Hrabě, S., 1979. Vodní máloštětinatci (Oligochaeta) Československa. Acta Universitatis Carolinae – Biologica 1–2: 1–167.

  • Hubbell, S. P., 2001. The unified neutral theory of biodiversity and biogeography, Princeton University Press, Princeton:

    Google Scholar 

  • Ilmonen, J. & L. Paasivirta, 2005. Benthic macrocrustacean and insect assemblages in relation to spring habitat characteristics: patterns in abundance and diversity. Hydrobiologia 533: 99–113.

    Article  Google Scholar 

  • Ilmonen, J., L. Paasivirta, R. Virtanen & T. Muotka, 2009. Regional and local drivers of macroinvertebrate assemblages in boreal springs. Journal of Biogeography 36: 822–834.

    Article  Google Scholar 

  • Juget, J., 1984. Oligochaeta of the epigean and underground fauna of the alluvial plain of the French upper Rhône (biotypological trial). Hydrobiologia 115: 175–182.

    Article  Google Scholar 

  • Juget, J. & M. Lafont, 1994. Theoretical habitat templets, species traits, and species richness: aquatic Oligochaetes in the Upper Rhône River and its floodplain. Freshwater Biology 31: 327–340.

    Article  Google Scholar 

  • Karaman G. & S. Ruffo, 1986. Amphipoda: Niphargus-Group (Niphargidae sensu Bousfield, 1982). In Botosaneanu L., (ed), Stygofauna Faunistic, Distributional, and Ecological Synthesis of the World Fauna inhabiting Subterranean Waters (including the Marine Interstitial). E.J. Brill/ Dr. W. Backhuys, Leiden: 514–534.

  • Kasprzak, K., 1979a. Skaposzczety (Oligochaeta) Pienin. I. Wazonkowce (Enchytraeidae). Fragmenta Faunistica 24: 7–56.

    Article  Google Scholar 

  • Kasprzak, K., 1979b. Skaposzczety (Oligochaeta) Pienin. II. Naididae, Tubificidae, Haplotaxidae, Lumbriculidae. Fragmenta Faunistica 24: 57–80.

    Article  Google Scholar 

  • Kasprzak, K., 1979c. Skaposzczety (Oligochaeta) Pienin. III. Dzdzownice (Lumbricidae). Fragmenta Faunistica 24: 81–95.

    Article  Google Scholar 

  • Kasprzak, K., 1989. Zoogeography and habitat distribution of earthworms (Lumbricidae) and enchytraeids (Enchytraeidae) of the Carpathian Mountains (Poland). Miscellania Zoologica 13: 37–44.

    Google Scholar 

  • Kembel, S., P. Cowan, M. Helmus, W. Cornwell, H. Morlon, D. Ackerly, S. P. Blomberg & C. O. Webb, 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 1463–1464.

    Article  CAS  PubMed  Google Scholar 

  • Krno I., F. Šporka & P. Bitušík 2010. Bentická makrofauna tatranských vôd. In: Koutná, A. & A. Šmatlák (eds), Tatry príroda. história, život – 1. diel. Nakladateľstvo - Baset, Praha: 423–434.

  • Kumar, S., G. Stecher, M. Li, C. Knyaz & K. Tamura, 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 547–1549.

    Article  Google Scholar 

  • Lafont, M., 1989. Contribution à la gestion des eaux continentales: utilisation des oligochètes comme descripteurs de l'état biologique et du degré de pollution des eaux et des sédiments. Thèse de Doctoratès Sciences, Université Lyon.

  • Lafont, M. & A. Vivier, 2006. Oligochaete assemblages in the hyporheic zone and coarse surface sediments: their importance for understanding of ecological functioning of watercourses. Hydrobiologia 564: 171–181.

    Article  Google Scholar 

  • Lafont, M., A. Durbec & C. Ille, 1992. Oligochaete worms as biological describers of the interactions between surface and groundwater: a first synthesis. Regulated Rivers, Research and Management 7: 65–73.

    Article  Google Scholar 

  • Lafont, M., J. C. Camus, A. Fournier & E. Sourp, 2001. A practical concept for the ecological assessment of aquatic ecosystems: application on the River Dore in France. Aquatic Ecology 35: 195–205.

    Article  CAS  Google Scholar 

  • Laliberté, E., P. Legendre & B. Shipley, 2014. FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. R Package. version 1, 0–12.

  • Lencioni, V., E. Dumnicka & B. Maiolini, 2004. The oligochaete fauna in high mountain streams (Trentino, NE Italy): ecological and taxonomical remarks. Studi Trentini di scienze naturali. Acta Biologica. 81: 167–176.

  • Liu, S., G. Xie, L. Wang, K. Cottenie, D. Liu & B. Wang, 2016. Different roles of environmental variables and spatial factors in structuring stream benthic diatom and macroinvertebrate in Yangtze River Delta, China. Ecological Indicators 61: 602–611.

    Article  CAS  Google Scholar 

  • Lindegaard, C., K. P. Brodersen, P. Wiberg-Larsen & J. Skriver, 1998. Multivariate analyses of macrofaunal communities in Danish springs and springbrooks. In Botosaneanu, L. (ed), Studies in crenobiology, the biology of springs and springbrooks Backhuys Publishers, Leiden: 201–220.

    Google Scholar 

  • Magalhaes, I. S. & G. Bernasconi, 2014. Phenotypic divergence and inter-specific trait correlation in a plant-pollinator/seed predator mutualism. Evolutionary Ecology 28: 905–922.

    Article  Google Scholar 

  • Malicky, H., 1983. Chorological patterns and biome types of European Trichoptera and other freshwater insects. Archiv Fur Hydrobiology 96: 223–244.

    Google Scholar 

  • Malicky, H., 2000. Arealdynamik und Biomgrundtypen am Beispiel der Köcherfliegen (Trichoptera). Entomologica Basiliensia 22: 235–259.

    Google Scholar 

  • MacArthur, R. H. & E. O. Wilson, 1967. The Theory of Island Biogeography. Monographs in Population Biology, Princeton University Press, New York:

    Google Scholar 

  • Martínez-Ansemil, E., F. Giacomazzi & B. Sambugar, 2016. Groundwater oligochaetes (Annelida: Clitellata) of the Dinaric region (South-East Europe). Biologia 71: 24–30.

    Article  Google Scholar 

  • McGill, B. J., B. J. Enquist, E. Weiher & M. Westoby, 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178–185.

    Article  Google Scholar 

  • Milbrink, G., 1993. Evidence for mutualistic interactions in fresh-water oligochaete communities. Oikos 68: 317–322.

    Article  Google Scholar 

  • Moran, P., 1950. A test for serial independence of residuals. Biometrika 37: 178–181.

    Article  CAS  PubMed  Google Scholar 

  • Mouchet, M. A., S. Villéger, N. W. H. Mason & D. Mouillot, 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24: 867–876.

    Article  Google Scholar 

  • Nijboer, R. C., M. J. Wetzel & P. F. M. Verdonschot, 2004. Diversity anddistribution of Tubificidae, Naididae and Lumbriculidae (Annelida:Oligochaeta) in the Netherlands: an evaluation of twenty years ofmonitoring data. Hydrobiologia 520: 127–141.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2012. Vegan: Community Ecology Package. R package version 2.0-2.

  • Oliveira, P. C. D., H. G. van der Geest, M. H. S. Kraak & P. F. M. Verdonschot, 2019. Land use affects lowland stream ecosystems through dissolved oxygen regimes. Scientific Reports 9: 1–10.

    Google Scholar 

  • Paradis, E. & K. Schliep, 2018. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35: 526–528.

    Article  CAS  Google Scholar 

  • Plašienka, D., P. Grecula, M. Putiš, M. Kováč & D. Hovorka, 1997. Evolution and structure of the Western Carpathians: An overview. In Grecula, P., D. Hovorka & M. Putiš (eds), Geological evolution of the Western Carpathians (Mineralia Slovaca Monograph) Geological Survey of Slovak Republic, Bratislava: 1–24.

    Google Scholar 

  • Pebesma, E. J., 2004. Multivariable geostatistics in S: the gstat package. Computers & Geosciences 30: 683–691.

    Article  Google Scholar 

  • Petsch, D., 2016. Causes and consequences of biotic homogenization in freshwater ecosystems. International Review of Hydrobiology 101: 113–122.

    Article  Google Scholar 

  • Presley, S. J., L. M. Cisneros, Ch. L. Higgins, B. T. Klingbeil, S. M. Scheiner & M. R. Willig, 2018. Phylogenetic and functional underdispersion in Neotropical phyllostomid bat communities. Biotropica 50: 135–145.

    Article  Google Scholar 

  • Pinheiro, J. C., D. J. Bates, S. DebRoy & D. Sakar, 2012. The Nlme Package: Linear and Nonlinear Mixed Effects Models, R Version 3, R package version.

  • Poff, N. L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409.

    Article  Google Scholar 

  • Popchenko, V. I., 1988. Aquatic Oligochaete Worms (Oligochaeta limicola) of Northern Europe, Nauka, Leningrad:

    Google Scholar 

  • R Core Team, 2016. R: A Language and Environment for Statistical Computing. Austria. https://www.R-project.org/

  • Rádková, V., J. Bojková, V. Křoupalová, J. Schenková, V. Syrovátka & M. Horsák, 2014. The role of dispersal mode and habitat specialisation in metacommunity structuring of aquatic macroinvertebrates in isolated spring fens. Freshwater Biology 59: 2256–2267.

    Article  Google Scholar 

  • Rashleigh, B., 2008. Benthic Macroinvertebrate Assemblages and Environmental Correlates in Springs of the Ridge and Valley Province. Presented at Association of Southeastern Biologists Meeting, Greenville, SC.

  • Revell, L. J., 2012. phytols: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217–223.

    Article  Google Scholar 

  • Rosati, M., G. Rossetti, M. Cantonati, V. Pieri, J. R. Roca & F. Mesquita-Joanes, 2017. Are aquatic assemblages from small water bodies more stochastic in dryer climates? An analysis of ostracod spring metacommunities. Hydrobiologia 793: 199–212.

    Article  Google Scholar 

  • Rosenzweig, M., 1995. Species Diversity in Space and Time, Cambridge University Press, Cambridge:

    Book  Google Scholar 

  • Saefken, B., D. Ruegamer, T. Kneib & S. Greven, 2018. Conditional model selection in mixed-effects models with cAIC4. ArXiv e-Prints. 1803: 05664.

    Google Scholar 

  • Särkkä, J., 1987. The occurrence of oligochaetes in lake chains receiving pulp mill waste and their relation to eutrophication on the trophic scale. Hydrobiologia 155: 259–266.

    Article  Google Scholar 

  • Scarsbrook, M., J. Barquin & D. P. Gray, 2007. New Zealand Coldwater Springs and their Biodiversity, Science & Technical Publishing Department of Conservation, Wellington:

    Google Scholar 

  • Schenkova, J., O. Komarek & S. Zahrádková, 2001. Oligochaeta of the Morava and Odra River basins (Czech Republic): species distribution and community composition. Hydrobiologia 463: 235–240.

    Article  Google Scholar 

  • Schenková, J. & J. Helešic, 2006. Habitat preferences of aquatic Oligochaeta (Annelida) in the Rokytná River, Czech Republic- a small highland stream. Hydrobiologia 564: 117–126.

    Article  Google Scholar 

  • Schenková, J., P. Pařil, K. Petřivalská & J. Bojková, 2010. Aquatic oligochaetes (Annelida: Clitellata) of the Czech Republic: checklist, new records, and ecological remarks. Zootaxa 2676: 29–44.

    Article  Google Scholar 

  • Schenková, J., M. Bílková & M. Horsák, 2016. The response of Clitellata (Annelida) to environmental gradients inspring fens. Limnologica 57: 73–82.

    Article  Google Scholar 

  • Schenková, J., V. Polášková, M. Bílková, J. Bojková, V. Syrovátka, M. Polášek & M. Horsák, 2020. Climatically induced temperature instability of groundwater-dependent habitats will suppress cold-adapted Clitellata species. International Review of Hydrobiology 105: 85–93.

    Article  Google Scholar 

  • Schmelz, R. M. & R. Collado, 2010. A guide to European terrestrial and freshwater species of Enchytraeidae (Oligochaeta). Soil Organisms 82: 1–176.

    Google Scholar 

  • Smith, E. P. & G. Van Belle, 1984. Nonparametric estimation of species richness. Biometrics 40: 119–129.

    Article  Google Scholar 

  • Soininen, J., R. Paavola & T. Muotka, 2004. Benthic diatom communities in boreal streams: community structure in relation to environmental and spatial gradients. Ecography 27: 330–342.

    Article  Google Scholar 

  • Spasojevic, M. J., S. Copeland & K. N. Suding, 2014. Using functional diversity patterns to explore metacommunity dynamics: a framework for understanding local and regional influences on community structure. Ecography 37: 939–949.

    Article  Google Scholar 

  • Stoch, F., M. Artheau, A. Brancelj, D. M. P. Galassi & F. Malard, 2009. Biodiversity indicators in European ground waters: towards a predictive model of stygobiotic species richness. Freshwater Biology 54: 745–755.

    Article  Google Scholar 

  • Šporka, F., 1984. Oligochaeta des Flusses Belá. Práce Laboratória Rybárstva a Hydrobiológie 4: 99–117.

    Google Scholar 

  • Šporka, F., 1992a. Makrozoobentos mediálu jazier Západných Tatier. Zborník Prác o TANAP 32: 129–138.

    Google Scholar 

  • Šporka, F., 1992b. Máloštetinavce (Oligochaeta) jazier v Západných Tatrách. Zborník Prác o TANAP 32: 139–148.

    Google Scholar 

  • Šporka F., 1996. Macrozoobenthos-permanent fauna. In: Krno, I., (ed), Limnology of the Turiec river basin (West Carpthians, Slovakia). Biologia 51, Bratislava: 23–27.

  • Šporka, F., (ed.) 2003, Vodné bezstavovce (makroevertebráta) Slovenska, súpis druhov a autekologické charakteristiky. Slovenský hydrometeorologický ústav, Bratislava.

  • Thorup, J. & C. Lindegaard, 1977. Studies on Danish springs. Folia Limnologica Scandinavica 17: 7–15.

    Google Scholar 

  • Tilman, D., 1982. Resource Competition and Community Structure, Princeton University Press, Princeton:

    Google Scholar 

  • Timm, T., 1987. Aquatic Oligochaeta of the North Western part of the USSR (in Russian). Akademiya nauk Ehstonskoi SSR, Tallin

  • Timm, T., 2009. A guide to the freshwater Oligochaeta and Polychaeta of Northern and Central Europe. Lauterbornia 66: 1–235.

    Google Scholar 

  • Tofts, R. & J. Silvertown, 2000. A phylogenetic approach to community assembly from the local species pool. Proceedings of the Royal Society of London 267: 363–369.

    Article  CAS  Google Scholar 

  • Van Haaren, T. & J. Soors, 2013. Aquatic Oligochaeta of the Netherlands and Belgium, KNNV Publishing, Zeist:

    Book  Google Scholar 

  • Verdonschot, P. F. M., 2001. Hydrology and substrates: determinants of oligochaete distribution in lowland streams (The Netherlands). Hydrobiologia 463: 249–262.

    Article  Google Scholar 

  • Vlček, L., 2013. Guidebook for the field trip held—Excursion guide for postcongress excursions. 16th International Congress of Speleology. Slovak Speleological Society, Liptovský Mikuláš.

  • von Fumetti, S., P. Nagel, N. Scheifhacken & B. Baltes, 2006. Factors governing macrozoobenthic assemblages in perennial springs in north-western Switzerland. Hydrobiologia 568: 467–475.

    Article  Google Scholar 

  • Ward, J. V. & K. Tockner, 2001. Biodiversity: towards a unifying theme for river ecology. Freshwater Biology 46: 807–819.

    Article  Google Scholar 

  • Webb, C. O., D. D. Ackerly, M. A. McPeek & M. J. Donoghue, 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33: 475–505.

    Article  Google Scholar 

  • Weiher, E. & P. A. Keddy, 1995. Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74: 159–164.

    Article  Google Scholar 

  • Weiher, E., G. P. Clarke & P. A. Keddy, 1998. Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos 81: 309–322.

    Article  Google Scholar 

  • Weiher, E. & P. Keddy, 1999. Ecological Assembly Rules: Perspectives, Advances, Retreats, Cambridge University Press, Cambridge:

    Book  Google Scholar 

  • Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer, New York. https://ggplot2.tidyverse.org

  • Williams, D. D., 1991. Life history traits of aquatic arthropods in springs. Memoirs of the Entomological Society of Canada 155: 107–124.

    Article  Google Scholar 

  • Williams, D. D. & I. D. Hogg, 1988. Ecology and production of invertebrates in a Canadian coldwater spring-springbrook system. Ecography 11: 41–44.

    Article  CAS  Google Scholar 

  • Yount, J. L., 1956. Factors that control species numbers in Silver Springs, Florida. Limnology and Oceanography 1: 286–295.

    Article  Google Scholar 

  • Zollhöfer, J. M., 1999. Spring biotopes in northern Switzerland: Habitat heterogeneity, zoobenthic communities and colonization dynamics. Doctoral thesis, ETH Zűrich.

Download references

Acknowledgements

We would like to thank Tomáš Derka, Alexandra Rogánska, Katarína Gregušová, and students from the Department of Ecology, Faculty of Natural Sciences of Comenius University in Bratislava for the assistance with the field sampling and laboratory processing. We would also like to thank the two anonymous reviewers that helped to improve the manuscript.

Funding

This study was financially supported by the Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic—VEGA [Projects Number: 1/0255/15 and 1/0127/20].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by [PB], [JC], [TL], and [PM]. The first draft of the manuscript was written by [PB] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pavel Beracko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The research complies with ethical standards.

Additional information

Handling editor: Verónica Ferreira

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beracko, P., Cíbik, J., Macko, P. et al. Three biodiversity facets and assembly mechanism of the oligochaete community in the karst spring environment. Hydrobiologia 849, 603–624 (2022). https://doi.org/10.1007/s10750-021-04728-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04728-1

Keywords

Navigation