Skip to main content
Log in

Effects of habitat complexity on giant water bug (Belostoma) functional response to rams-horn snail prey (Helisoma)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Outcomes of predator–prey interactions depend on biotic and abiotic factors. Habitat complexity, for example, mediates predator functional response type and parameters (attack rate and handling time). However, the relationship between habitat complexity and functional response varies across ecosystems. We assessed interactions between the giant water bug, Belostoma sp., and its prey, rams-horn snails, Helisoma trivolvis, across four prey densities (N = 2, 4, 8, 16 snails) and three habitat complexity levels (No-complexity, Low-complexity, High-complexity) to understand how complexity affected the functional response. We also tested effects of predator and prey body size on number of prey killed. Belostoma exhibited a Type III functional response in all habitat complexity treatments. Attack rate tended to increase with increasing complexity. Handling time was different among treatments, being lowest in the No-complexity treatment and highest in the Low-complexity treatment. Belostoma body size was positively related, while Helisoma body size was inversely related, to the number of Helisoma killed. We show habitat complexity does not affect the shape of predator functional response but impacts response parameters in the Belostoma–Helisoma system. We reaffirm that attack rate, handling time, and mortality outcomes for prey within predator–prey interactions are affected by abiotic factors through habitat complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Data and figures will be made available in the Figshare repository.

Code availability

R code to recreate the analyses will be made available in a Figshare repository as well as the corresponding author’s Github webpage.

References

  • Agrawal, A. A., D. D. Ackerly, F. Adler, A. E. Arnold, C. Cáceres, D. F. Doak, E. Post, P. J. Hudson, J. Maron, K. A. Mooney, M. Power, D. Schemske, J. Stachowicz, S. Strauss, M. G. Turner & E. Werner, 2007. Filling key gaps in population and community ecology. Frontiers in Ecology and the Environment 5: 145–152.

    Article  Google Scholar 

  • Alexander, M., J. Dick, N. O’Connor, N. Haddaway & K. Farnsworth, 2012. Functional responses of the intertidal amphipod Echinogammarus marinus: effects of prey supply, model selection and habitat complexity. Marine Ecology Progress Series 468: 191–202.

    Article  Google Scholar 

  • Aljetlawi, A. A., E. Sparrevik & K. Leonardsson, 2004. Prey-predator size-dependent functional response: derivation and rescaling to the real world. Journal of Animal Ecology 73: 239–252.

    Article  Google Scholar 

  • Anderson, T. L., 2016. Predation risk between cannibalistic aeshnid dragonflies influences their functional response on a larval salamander prey. Journal of Zoology 300: 221–227.

    Article  Google Scholar 

  • Anderson, T. L., J. L. Heemeyer, W. E. Peterman, M. J. Everson, B. H. Ousterhout, D. L. Drake & R. D. Semlitsch, 2015. Automated analysis of temperature variance to determine inundation state of wetlands. Wetlands Ecology and Management 23: 1039–1047.

    Article  Google Scholar 

  • Avery, R. A., 1971. Estimates of food consumption by the lizard Lacerta vivipara Jacquin. Journal of Animal Ecology 40: 351–365.

    Article  Google Scholar 

  • Barrios-O’Neill, D., R. Kelly, J. T. A. Dick, A. Ricciardi, H. J. MacIsaac & M. C. Emmerson, 2016. On the context-dependent scaling of consumer feeding rates. Ecology Letters 19: 668–678.

    Article  PubMed  Google Scholar 

  • Bolker, B. M., 2008. Ecological models and data in R. Princeton University Press, Princeton, NJ.

    Book  Google Scholar 

  • Bolker, B. M., & R Core Team, 2020. bbmle: Tools for general maximum likelihood estimation.

  • Brose, U., 2010. Body-mass constraints on foraging behaviour determine population and food-web dynamics. Functional Ecology 24: 28–34.

    Article  Google Scholar 

  • Buck, T. L., G. A. Breed, S. C. Pennings, M. E. Chase, M. Zimmer & T. H. Carefoot, 2003. Diet choice in an omnivorous salt-marsh crab: different food types, body size, and habitat complexity. Journal of Experimental Marine Biology and Ecology 292: 103–116.

    Article  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Inference: A Practical Information-Theoretic Approach. Springer, New York.

    Google Scholar 

  • Cammen, L. M., 1979. Ingestion rate: an empirical model for aquatic deposit feeders and detritivores. Oecologia 44: 303–310.

    Article  PubMed  Google Scholar 

  • Chamberlain, S. A., J. L. Bronstein & J. A. Rudgers, 2014. How context dependent are species interactions? Ecology Letters 17: 881–890.

    Article  PubMed  Google Scholar 

  • Clark, T. L. & F. J. Messina, 1998. Foraging behavior of lacewing larvae (Neuroptera: Chrysopidae) on plants with divergent architectures. Journal of Insect Behavior 11: 303–317.

    Article  Google Scholar 

  • Colton, T. F., 1987. Extending functional response models to include a second prey type: an experimental test. Ecology 68: 900–912.

    Article  Google Scholar 

  • Crowder, L. B. & W. E. Cooper, 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802–1813.

    Article  Google Scholar 

  • Cuthbert, R. N., T. Dalu, R. J. Wasserman, A. Callaghan, O. L. F. Weyl & J. T. A. Dick, 2019. Using functional responses to quantify notonectid predatory impacts across increasingly complex environments. Acta Oecologica 95: 116–119.

    Article  Google Scholar 

  • Dewitt, T. J., B. W. Robinson & D. S. Wilson, 2000. Functional diversity among predators of a freshwater snail imposes an adaptive trade-off for shell morphology. Evolutionary Ecology Research 2: 129–148.

    Google Scholar 

  • Diehl, S., 1988. Foraging efficiency of three freshwater fishes: effects of structural complexity and light. Oikos 53: 207–214.

    Article  Google Scholar 

  • Drake, D. L., T. L. Anderson, L. M. Smith, K. M. Lohraff & R. D. Semlitsch, 2014. Predation of eggs and recently hatched larvae of endemic ringed salamanders (Ambystoma annulatum) by native and introduced aquatic predators. Herpetologica 70: 378–387.

    Article  Google Scholar 

  • Eggleston, D. B., R. N. Lipcius & A. H. Hines, 1992. Density-dependent predation by blue crabs upon infaunal clam species with contrasting distribution and abundance patterns. Marine Ecology Progress Series 85: 55–68.

    Article  Google Scholar 

  • Englund, G., G. Ohluynd, C. L. Hein & S. Diehl, 2011. Temperature dependence of the functional response. Ecology Letters 14: 914–921.

    Article  PubMed  Google Scholar 

  • Gergs, A. & H. T. Ratte, 2009. Predicting functional response and size selectivity of juvenile Notonecta maculata foraging on Daphnia magna. Ecological Modelling 220: 3331–3341.

    Article  Google Scholar 

  • Gingras, D., P. Dutilleul & G. Boivin, 2003. Effect of plant structure on host finding capacity of lepidopterous pests of crucifers by two Trichogramma parasitoids. Biological Control 27: 25–31.

    Article  Google Scholar 

  • González-Suárez, M., M. Mugabo, B. Decencière, S. Perret, D. Claessen & J. F. Le Galliard, 2011. Disentangling the effects of predator body size and prey density on prey consumption in a lizard. Functional Ecology 25: 158–165.

    Article  Google Scholar 

  • Gotceitas, V., 1990. Variation in plant stem density and its effects on foraging success of juvenile bluegill sunfish. Environmental Biology of Fishes 27: 63–70.

    Article  Google Scholar 

  • Gotceitas, V. & P. Colgan, 1989. Predator foraging success and habitat complexity: quantitative test of the threshold hypothesis. Oecologia 80: 158–166.

    Article  PubMed  Google Scholar 

  • Green, S. J. & I. M. Cote, 2014. Trait-based diet selection: prey behavior and morphology predict vulnerability to predation in reef fish communities. Journal of Animal Ecology 83: 1451–1460.

    Article  Google Scholar 

  • Hassell, M.P., J.H. Lawton, & J.R. Beddington, 1977. Sigmoid functional responses by invertebrate predators and parasitoids. Journal of Animal Ecology 46: 249–262.

    Article  Google Scholar 

  • Heck, K. L. & L. B. Crowder, 1991. Habitat structure and predator-prey interactions in vegetated aquatic systems. In Bell, S., E. McCoy & H. Mushinsky (eds.), Habitat Structure: The Physical Arrangement of Objects in Space. Chapman and Hall, London, UK: 281–299.

    Chapter  Google Scholar 

  • Holling, C. S., 1959. The components of predation as revealed by a study of small-mammal predation of the european pine sawfly. The Canadian Entomologist 91: 293–320.

    Article  Google Scholar 

  • Hossie, T. J. & D. L. Murray, 2010. You can’t run but you can hide: refuge use in frog tadpoles elicits density-dependent predation by dragonfly larvae. Oecologia 163: 395–404.

    Article  PubMed  Google Scholar 

  • Hossie, T. J., K. C. Chan, & D. L. Murray, 2021. Increasing availability of palatable prey induces predator-dependence and increases predation on unpalatable prey. Scientific Reports 11: 676.

  • Hoverman, J. T. & R. A. Relyea, 2007a. The rules of engagement: how to defend against combinations of predators. Oecologia 154: 551–560.

    Article  PubMed  Google Scholar 

  • Hoverman, J. T. & R. A. Relyea, 2007b. How flexible is phenotypic plasticity? Developmental windows for trait induction and reversal. Ecology 88: 693–705.

    Article  PubMed  Google Scholar 

  • Hoverman, J. T. & R. A. Relyea, 2008. Temporal environmental variation and phenotypic plasticity: a mechanism underlying priority effects. Oikos 117: 23–32.

    Article  Google Scholar 

  • Hoverman, J. T. & R. A. Relyea, 2009. Survival trade-offs associated with inducible defences in snails: the roles of multiple predators and developmental plasticity. Functional Ecology 23: 1179–1188.

    Article  Google Scholar 

  • Hoverman, J. T., J. R. Auld & R. A. Relyea, 2005. Putting prey back together again: integrating predator-induced behavior, morphology, and life history. Oecologia 144: 481–491.

    Article  PubMed  Google Scholar 

  • Janssen, A., M. W. Sabelis, S. Magalhães, M. Montserrat & T. Van Der Hammen, 2007. Habitat structure affects intraguild predation. Ecology 88: 2713–2719.

    Article  PubMed  Google Scholar 

  • Jara, F. G., 2016. Predator-prey body size relationship in temporary wetlands: effect of predatory insects on prey size spectra and survival. International Journal of Limnology 52: 205–216.

    Article  Google Scholar 

  • Jones, J., A. P. Thorpe & D. V. Obrecht, 2020. Limnological characteristics of Missouri reservoirs: synthesis of a long-term assessment. Lake and Reservoir Management 36: 412–422.

    Article  CAS  Google Scholar 

  • Juliano, S., 2001. Nonlinear curve fitting: predation and functional response curves. In Scheiner, S. & J. Gurevitch (eds.), Design and Analysis of Ecological Experiments. Oxford University Press, New York: 178–196.

    Google Scholar 

  • Kalinkat, G., F. D. Schneider, C. Digel, C. Guill, B. C. Rall & U. Brose, 2013. Body masses, functional responses and predator-prey stability. Ecology Letters 16: 1126–1134.

    Article  PubMed  Google Scholar 

  • Kareiva, P. & R. Sahakian, 1990. Tritrophic effects of a simple architectural mutation in pea plants. Nature 345: 433–434.

    Article  Google Scholar 

  • Kater, S. B., 1974. Feeding in Helisoma trivolvis: the morphological and physiological bases of a fixed action pattern. American Zoologist 14: 1017–1036.

    Article  Google Scholar 

  • Kesler, D. H. & W. R. Munns, 1989. Predation by Belostoma flumineum (Hemiptera): an important cause of mortality in freshwater snails. Journal of the North American Benthological Society 8: 342–350.

    Article  Google Scholar 

  • Klecka, J. & D. S. Boukal, 2013. Foraging and vulnerability traits modify predator-prey body mass allometry: freshwater macroinvertebrates as a case study. Journal of Animal Ecology 82: 1031–1041.

    Article  Google Scholar 

  • Klecka, J. & D. S. Boukal, 2014. The effect of habitat structure on prey mortality depends on predator and prey microhabitat use. Oecologia 176: 183–191.

    Article  PubMed  Google Scholar 

  • Klug, H. & P. Hicks, 2014. The giant water bug, Belostoma lutarium (Stål): an ideal system for studies of ecology, evolution, and behavior. Journal of the Tennessee Academy of Science 89: 51–58.

    Google Scholar 

  • Kotler, B., 2016. Fun and Games: predator-prey foraging games and related interactions. Israel Journal of Ecology and Evolution 62: 118–120.

    Article  Google Scholar 

  • Kovalenko, K. E., S. M. Thomaz & D. M. Warfe, 2012. Habitat complexity: approaches and future directions. Hydrobiologia 685: 1–17.

    Article  Google Scholar 

  • Kratina, P., M. Vos, A. Bateman & B. R. Anholt, 2009. Functional responses modified by predator density. Oecologia 159: 425–433.

    Article  PubMed  Google Scholar 

  • Langellotto, G. A. & R. F. Denno, 2004. Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139: 1–10.

    Article  PubMed  Google Scholar 

  • Manatunge, J., T. Asaeda & T. Priyadarshana, 2000. The influence of structural complexity on fish-zooplankton interactions: a study using artificial submerged macrophytes. Environmental Biology of Fishes 58: 425–438.

    Article  Google Scholar 

  • Mccoy, M. W., A. C. Stier & C. W. Osenberg, 2012. Emergent effects of multiple predators on prey survival: the importance of depletion and the functional response. Ecology Letters 15: 1449–1456.

    Article  PubMed  Google Scholar 

  • Mocq, J., P. R. Soukup, J. Naslund & D. S. Boukal, 2021. Disentangling the nonlinear effects of habitat complexity on functional responses. Journal of Animal Ecology 90: 1525–1537.

    Article  Google Scholar 

  • Moksnes, P. O., R. N. Lipcius, L. Pihl & J. Van Montfrans, 1997. Cannibal-prey dynamics in young juveniles and postlarvae of the blue crab. Journal of Experimental Marine Biology and Ecology 215: 157–187.

    Article  Google Scholar 

  • Nyström, P. & J. R. Pérez, 1998. Crayfish predation on the common pond snail (Lymnaea stagnalis): the effect of habitat complexity and snail size on foraging efficiency. Hydrobiologia 368: 201–208.

    Article  Google Scholar 

  • Paterson, R. A., J. T. A. Dick, D. W. Pritchard, M. Ennis, M. J. Hatcher & A. M. Dunn, 2015. Predicting invasive species impacts: a community module functional response approach reveals context dependencies. Journal of Animal Ecology 84: 453–463.

    Article  Google Scholar 

  • Pawar, S., A. I. Dell & V. M. Savage, 2012. Dimensionality of consumer search space drives trophic interaction strengths. Nature 486: 485–489.

    Article  CAS  PubMed  Google Scholar 

  • Payton, M. E., M. H. Greenstone & N. Schenker, 2003. Overlapping confidence intervals or standard error intervals: what do they mean in terms of statistical significance? Journal of Insect Science 3: 34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters, R., 1989. The Ecological Implications of Body Size. Cambridge University Press, Cambridge.

    Google Scholar 

  • R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.r-project.org/.

  • Real, L., 1977. The kinetics of functional response. American Naturalist 111: 289–300.

    Article  Google Scholar 

  • Rennie, M. D. & L. J. Jackson, 2005. The influence of habitat complexity on littoral invertebrate distributions: patterns differ in shallow prairie lakes with and without fish. Canadian Journal of Fisheries and Aquatic Sciences 62: 2088–2099.

    Article  CAS  Google Scholar 

  • Rogers, D., 1972. Random search and insect population models. Journal of Animal Ecology 41: 369–383.

    Article  Google Scholar 

  • Rosenbaum, B. & B. Rall, 2018. Fitting functional responses: direct parameter estimation by simulating differential equations. Methods in Ecology and Evolution 9: 2076–2090.

    Article  Google Scholar 

  • Rossi, M. N., C. Reigada & W. A. C. Goday, 2006. The role of habitat heterogeneity for the functional response of the spider Nesticodes rufipes (Araneae: Theridiidae) to houseflies. Applied Entomology and Zoology 41: 419–427.

    Article  Google Scholar 

  • Runck, C. & D. W. Blinn, 1994. Role of Belostoma bakeri (Heteroptera) in the trophic ecology of a fishless desert spring. Limnology and Oceanography 39: 1800–1812.

    Article  Google Scholar 

  • Skalski, G. T. & J. F. Gilliam, 2001. Functional responses with predator interference: viable alternatives to the Holling type II model. Ecology 82: 3083–3092.

    Article  Google Scholar 

  • Smith, D. A., 1989. Tests of feeding selectivity in Helisoma trivolvis (Gastropoda: Pulmonata). Transactions of the American Microscopical Society 108: 402.

    Article  Google Scholar 

  • Smith, R. L., 1997. The evolution of paternal care in the giant water bugs (Heroptera: Belostomatidae). In Choe, J. C. & B. Crepsi (eds.), The Evolution of Social Behaviour in Insects and Arachnids. Cambridge University Press, London: 116–149.

    Chapter  Google Scholar 

  • Stoner, A. W., 2009. Habitat-mediated survival of newly settled red king crab in the presence of a predatory fish: role of habitat complexity and heterogeneity. Journal of Experimental Marine Biology and Ecology 382: 54–60.

    Article  Google Scholar 

  • Swart, C. C. & B. E. Felgenhauer, 2003. Structure and function of the mouthparts and salivary gland complex of the giant waterbug, Belostoma lutarium (Stål) (Hemiptera: Belostomatidae). Annals of the Entomological Society of America 96: 870–882.

    Article  Google Scholar 

  • Swart, C. C. & R. C. Taylor, 2004. Behavioral interactions between the giant water bug (Belostoma lutarium) and tadpoles of Bufo woodhousii. Southeastern Naturalist 3: 13–24.

    Article  Google Scholar 

  • Thompson, D. J., 1975. Towards a predator-prey model incorporating age structure: the effects of predator and prey size on the predation of Daphnia magna by Ischnura elegans. The Journal of Animal Ecology 44: 907.

    Article  Google Scholar 

  • Trexler, J., C. McCulloch & J. Travis, 1988. How can the functional response best be determined? Oecologia 76: 206–214.

    Article  PubMed  Google Scholar 

  • Tripet, A. F. & N. Perrin, 1994. Size-dependent predation by Dugesia lugubris (Turbellaria) on Physa acuta (Gastropoda): experiments and Model. Ecology 8: 458–463.

    Google Scholar 

  • Turesson, H. & C. Brönmark, 2007. Predator-prey encounter rates in freshwater piscivores: effects of prey density and water transparency. Oecologia 153: 281–290.

    Article  PubMed  Google Scholar 

  • Uiterwaal, S. F. & J. P. DeLong, 2020. Functional responses are maximized at intermediate temperatures. Ecology 101: 1–10.

    Article  Google Scholar 

  • Uiterwaal, S. F., C. Mares & J. P. DeLong, 2017. Body size, body size ratio, and prey type influence the functional response of damselfly nymphs. Oecologia 185: 339–346.

    Article  PubMed  Google Scholar 

  • Uszko, W., S. Diehl & J. Wickman, 2020. Fitting functional response surfaces to data: a best practice guide. Ecosphere 11:

    Article  Google Scholar 

  • Vucic-Pestic, O., B. C. Rall, G. Kalinkat & U. Brose, 2010. Allometric functional response model: body masses constrain interaction strengths. Journal of Animal Ecology 79: 249–256.

    Article  Google Scholar 

  • Wahlström, E., L. Persson, S. Diehl & P. Byström, 2000. Size-dependent foraging efficiency, cannibalism and zooplankton community structure. Oecologia 123: 138–148.

    Article  PubMed  Google Scholar 

  • Wasserman, R. J., M. E. Alexander, O. L. F. Weyl, D. Barrios-O’Neill, P. W. Froneman & T. Dalu, 2016. Emergent effects of structural complexity and temperature on predator-prey interactions. Ecosphere 7: 1–11.

    Article  Google Scholar 

  • Winfield, I. J., 1986. The influence of simulated aquatic macrophytes on the zooplankton consumption rate of juvenile roach, Rutilus rutilus, rudd, Scardinius erythrophthalmus, and perch, Perca fluviatilis. Journal of Fish Biology 29: 37–48.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Division of Biological Sciences, University of Missouri, for greenhouse access; B. Knapp and the School of Natural Resources, University of Missouri, for access to Baskett; R. Abney, M. Clay, C. Crouch, T. Hessler, D. Hicks, J. Horne, E. Kinzinger, Z. Miller, E. Petty, A. Roistacher, D. Smith, J. Wilson, and R. Xu for assisting in experimental set-up, data collection, and discussions related to the project, and J. Hoverman for assisting with snail identification. All experiments conducted for this study are in compliance with the current laws of the United States of America.

Funding

JK was supported by AFRI EWD (2019-67011-29729) from the USDA National Institute of Food and Agriculture. SJC was supported by an NSF Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

JCG aided in project design, collected data, conducted preliminary analysis, wrote and reviewed the original draft. SJC aided in project conceptualization, collected data, conducted preliminary analysis, wrote and edited the original draft. JK aided in project design, collected data, conducted preliminary analysis, wrote and edited the original draft. JACG aided in project design, collected data, conducted preliminary analysis, wrote and edited the original draft. TLA aided in project conception, collected data, conducted formal analysis, reviewed and edited the original draft.

Corresponding author

Correspondence to Joe C. Gunn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Dani Boix

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1613 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunn, J.C., Clements, S.J., Kansman, J.T. et al. Effects of habitat complexity on giant water bug (Belostoma) functional response to rams-horn snail prey (Helisoma). Hydrobiologia 848, 4585–4597 (2021). https://doi.org/10.1007/s10750-021-04663-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04663-1

Keywords

Navigation