Skip to main content

Advertisement

Log in

Macrophyte diversity alters invertebrate community and fish diet

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The diversity of aquatic macrophytes can offer different local conditions required to support an increased number of microhabitats, therefore resulting in diverse biotic communities. This study assessed the influence of macrophyte diversity on the ecological attributes of the associated invertebrates (diversity, richness and abundance), as well as the diet composition of a small fish, Moenkhausia forestii, that inhabits the Upper Paraná River floodplain in abundance, and present great contributions of invertebrates in its diet. The richness and diversity of invertebrates increased with increasing macrophyte diversity, while the abundance of invertebrates didn’t show a significant relationship. The diet of M. forestii differed among stands and the consumption of invertebrates increased with increasing macrophyte diversity, while the consumption of aquatic plants decreased. Moreover, the trophic niche breadth of M. forestii expanded, a probable result of the increase in the ecological opportunity promoted by higher macrophyte diversity. Our study emphasizes the importance of the diversity of these plants as they structure the environment and the associated communities, and changes in the attributes of these plants could be reflected on other trophic levels and even on a local scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Adler, P. H., & G. W. Courtney, 2019. Ecological and societal services of aquatic Diptera. Insects 10: 1–23.

    Article  Google Scholar 

  • Anderson, M. J, 2005. PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. Auckland, NZL: Department of Statistics, University of Auckland.

    Google Scholar 

  • Anderson, M. J., 2017. Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online 1–15.

  • Araújo, M. S., D. I, Bolnick & C. A. Layman, 2011. The ecological causes of individual specialisation. Ecology Letters 14: 948–958.

    Article  PubMed  Google Scholar 

  • Ávila, A. C., C. Stenert & L. Maltchik, 2011. Partitioning macroinvertebrate diversity across different spatial scales in southern Brazil coastal wetlands. Wetlands 31: 459–469.

    Article  Google Scholar 

  • Barthlott, W., S. Wiersch, Z. Čolić, & K. Koch, 2009. Classification of trichome types within species of the water fern Salvinia, and ontogeny of the eggbeater trichomes. Botany 87: 830–836.

    Article  Google Scholar 

  • Bell, N., T. Riis, A. M. Suren & A. Baattrup-Pedersen, 2014. Distribution of invertebrates within beds of two morphologically contrasting stream macrophyte species. Fundamental and Applied Limnology / Archiv für Hydrobiologie 183: 309–321.

    Article  Google Scholar 

  • Boelter, T., C. Stenert, M. M. Pires, E. S. F. Medeiros & L. Maltchik, 2018. Influence of plant habitat types and the presence of fish predators on macroinvertebrate assemblages in southern Brazilian highland wetlands. Fundamental and Applied Limnology / Archiv für Hydrobiologie 192: 65–77.

    Article  Google Scholar 

  • Campos, R., E. C. Oliveira, M. B. O. Pinto, A. P. S. Bertoncin, J. Higuti & K. Martens, 2017. Evaluation of quantitative sampling methods in pleuston: an example from ostracod communities. Limnologica 63: 36–41.

    Article  Google Scholar 

  • Cantoni, E. & E. Ronchetti, 2001. Robust inference for generalized linear models. Journal of the American Statistical Association 96: 1022–1030.

    Article  Google Scholar 

  • Carniatto, N., R. Fugi, B. A. Quirino, E. R. Cunha & S. M. Thomaz, 2020. An invasive and a native macrophyte species provide similar feeding habitat for fish. Ecology of Freshwater Fish 29: 112–120.

    Article  Google Scholar 

  • Cauchie, H. M., 2002. Chitin production by arthropods in the hydrosphere. Hydrobiologia 470: 63–96.

    Article  CAS  Google Scholar 

  • Celewicz-Goldyn, S. & N. Kuczynska-Kippen, 2017. Ecological value of macrophyte cover in creating habitat for microalgae (diatoms) and zooplankton (rotifers and crustaceans) in small field and forest water bodies. PLoS ONE 12: 1–14.

    Article  CAS  Google Scholar 

  • Choi, J. Y., K. S. Jeong, S. K. Kim, G. H. La, K. H. Chang & G. J. Joo, 2014. Role of macrophytes as microhabitats for zooplankton community in lentic freshwater ecosystems of South Korea. Ecological Informatics 24: 177–185.

    Article  Google Scholar 

  • Clarke, K.R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18:117–143.

    Article  Google Scholar 

  • Cremona, F., D. Planas & M. Lucotte, 2008. Biomass and composition of macroinvertebrate communities associated with different types of macrophyte architectures and habitats in a large fluvial lake. Fundamental and Applied Limnology / Archiv für Hydrobiologie 171: 119–130.

    Article  Google Scholar 

  • Cronin, G., K. Wissing & D. Lodge, 1998. Comparative feeding selectivity of herbivorous insects on water lilies: aquatic vs semi-terrestrial insects and submersed vs floating leaves. Freshwater Biology 39: 243–257.

    Article  Google Scholar 

  • Cunha, E. R., S. M. Thomaz, R. P. Mormul, E. G. Cafofo & A. B. Bonaldo, 2012. Macrophyte structural complexity influences spider assemblage attributes in wetlands. Wetlands 32: 369–377.

    Article  Google Scholar 

  • Dibble, E. D. & F. M. Pelicice, 2010. Influence of aquatic plant-specific habitat on an assemblage of small neotropical floodplain fishes. Ecology of Freshwater Fish 19: 381–389.

    Article  Google Scholar 

  • Dorenbosch, M. & E. S. Bakker, 2011. Herbivory in omnivorous fishes: effect of plant secondary metabolites and prey stoichiometry. Freshwater Biology 56: 1783–1797.

    Article  Google Scholar 

  • Fall, J. & Ø. Fiksen, 2019. No room for dessert: a mechanistic model of prey selection in gut-limited predatory fish. Fish and Fisheries 21:63–79.

    Article  Google Scholar 

  • Farina, S., R. Arthur, J. F. Pagès, P. Prado, J. Romero, A. Vergés, G. Hyndes, K. L. Heck, S. Glenos & T. Alcoverro, 2014. Differences in predator composition alter the direction of structure-mediated predation risk in macrophyte communities. Oikos 123: 1311–1322.

    Article  Google Scholar 

  • Fisher, J. C., W. E. Kelso & D. A. Rutherford, 2012. Macrophyte mediated predation on hydrilla-dwelling macroinvertebrates. Fundamental and Applied Limnology 181: 25–38.

    Article  Google Scholar 

  • Fontanarrosa, M. S., G. N. Chaparro & I. O’Farrell, 2013. Temporal and spatial patterns of macroinvertebrates associated with small and medium-sized free-floating plants. Wetlands 33: 47–63.

    Article  Google Scholar 

  • Francis, T. B. & D. E. Schindler, 2009. Shoreline urbanization reduces terrestrial insect subsidies to fishes in North American lakes. Oikos 118: 1872–1882.

    Article  Google Scholar 

  • Gallardo, L. I., R. P. Carnevali, E. A. Porcel & A. S. G. Poi, 2017. Does the effect of aquatic plant types on invertebrate assemblages change across seasons in a subtropical wetland? Limnetica 36: 87–98.

    Google Scholar 

  • Guinan, M. E., K. L. Kapuscinski & M. A. Teece, 2015. Seasonal diet shifts and trophic position of an invasive cyprinid, the rudd Scardinius erythrophthalmus (Linnaeus, 1758), in the upper Niagara river. Aquatic Invasions 10: 217–225.

    Article  Google Scholar 

  • Habib, S. & A. R. Yousuf, 2015. Effect of macrophytes on Phytophilous macroinvertebrate community: a review. Journal of Entomology and Zoology Studies 3: 377–384.

    Google Scholar 

  • Hansen, J. P., S. A. Wikström, H. Axemar & L. Kautsky, 2011. Distribution differences and active habitat choices of invertebrates between macrophytes of different morphological complexity. Aquatic Ecology 45: 11–22.

    Article  CAS  Google Scholar 

  • Heino, J. & J. Soininen, 2007. Are higher taxa adequate surrogates for species-level assemblage patterns and species richness in stream organisms? Biological Conservation 137: 78–89.

    Article  Google Scholar 

  • Hellawell, J. M. & R. Abel, 1971. A rapid volumetric method for the analysis of the food of fishes. Journal of Fish Biology 3: 29–37.

    Article  Google Scholar 

  • Henderson, P. A. & A. E. Magurran, 2014. Direct evidence that density-dependent regulation underpins the temporal stability of abundant species in a diverse animal community. Proceedings of the Royal Society B: Biological Sciences 281: 20141336.

    Article  PubMed  Google Scholar 

  • Hyslop, E. J, 1980. Stomach contents analysis review of methods and their applications. Journal of Fish Biology 17: 411–429.

    Article  Google Scholar 

  • Jeffries, M., 1993. Invertebrate colonization of artificial pondweeds of differing fractal dimension. Oikos 67: 142–148.

    Article  Google Scholar 

  • Jiménez-Ramos, R., F. G. Brun, L. G. Egea & J. J. Vergara, 2018. Food choice effects on herbivory: Intra-specific seagrass palatability and inter-specific macrophyte palatability in seagrass communities. Estuarine, Coastal and Shelf Science 204: 31–39.

    Article  Google Scholar 

  • Kliemann, B. C. K., M. C. Baldasso, S. F. R. Pini, M. C. Makrakis, S. Makrakis & R. L. Delariva, 2019. Assessing the diet and trophic niche breadth of an omnivorous fish (Glanidium ribeiroi) in subtropical lotic environments: Intraspecific and ontogenic responses to spatial variations. Marine and Freshwater Research 70: 1116–1128.

    Article  Google Scholar 

  • Krebs, C.J, 2014. Niche measures and resource preferences. In: Krebs CJ (ed), Ecological Methodology. Harper & Row, New York: 597-653.

    Google Scholar 

  • Lancaster, J. & B.J. Downes, 2013. Oviposition and eggs. In: Lancaster, J. & B.J. Downes (eds), Aquatic Entomology. Oxford University Press, Oxford, 173-190.

    Chapter  Google Scholar 

  • Layman, C. A., J. P. Quattrochi, C. M. Peyer & J. E. Allgeier, 2007. Niche width collapse in a resilient top predator following ecosystem fragmentation. Ecology Letters 10: 937–944.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopes, C. D. A., A. C. E. A. Faria, G. I. Manetta & E. Benedito-Cecilio, 2006. Caloric density of aquatic macrophytes in different environments of the Baía river subsystem, Upper Paraná river floodplain, Brazil. Brazilian Archives of Biology and Technology 49: 835–842.

    Article  Google Scholar 

  • Maechler M, P. Rousseeuw, C. Croux, V. Todorov, A. Ruckstuhl, M. Salibian-Barrera, T. Verbeke, M. Koller, E.L. Conceicao & M. Anna di Palma, 2020. robustbase: Basic Robust Statistics.

  • Marçal, S. & C. Callil, 2008. Structure of invertebrates community associated with Eichhornia crassipes Mart. (Solms-Laubach) after the introduction of Limnoperna fortunei (Dunker, 1857) (Bivalvia, Mytilidae) in the Upper Paraguay River, MT, Brazil. Acta Limnologica Brasiliensia 20: 359–371.

    Google Scholar 

  • Marshall, J. C., A. L. Steward & B. D. Harch, 2006. Taxonomic resolution and quantification of freshwater macroinvertebrate samples from an Australian dryland river: the benefits and costs of using species abundance data. Hydrobiologia 572: 171–194.

    Article  Google Scholar 

  • McAbendroth, A. L., P. M. Ramsay, A. Foggo, S. D. Rundle, D. T. Bilton & L. McAbendroth, 2005. Does macrophyte fractal drive invertebrate complexity diversity, biomass and body size distributions? Oikos 111: 279–290.

    Article  Google Scholar 

  • McCafferty, W. P., 1983. Aquatic Entomology: The Fshermen’s and Ecologists’ Illustrated Guide to Insects and Their Relative. Jones and Bartlett Learning Publishers, Boston.

    Google Scholar 

  • Moreno-Rueda, G., E. Melero, S. Reguera, F. J. Zamora-Camacho & I. Álvarez-Benito, 2018. Prey availability, prey selection, and trophic niche width in the lizard Psammodromus algirus along an elevational gradient. Current Zoology 64: 603–613.

    Article  PubMed  Google Scholar 

  • Mormul, R. P., L. A. Vieira, S. Pressinatte, A. Monkolski & A. M. Dos Santos, 2006. Sucessão de invertebrados durante o processo de decomposição de duas plantas aquáticas (Eichhornia azurea e Polygonum ferrugineum). Acta Scientiarum - Biological Sciences 28: 109–115.

    Google Scholar 

  • Nakamoto, K., J. Hayakawa, T. Kawamura, M. Kodama, H. Yamada, T. Kitagawa & Y. Watanabe, 2018. Phylogenetically diverse macrophyte community promotes species diversity of mobile epi-benthic invertebrates. Estuarine, Coastal and Shelf Science 207: 56–62.

    Article  Google Scholar 

  • Novakowski, G. C., N. S. Hahn & R. Fugi, 2008. Diet seasonality and food overlap of the fish assemblage in a pantanal pond. Neotropical Ichthyology 6: 567–576.

    Article  Google Scholar 

  • Ohtaka, A., T. Narita, T. Kamiya, H. Katakura, Y. Araki, S. Im, R. Chhay & S. Tsukawaki, 2011. Composition of aquatic invertebrates associated with macrophytes in Lake Tonle Sap, Cambodia. Limnology 12: 137–144.

    Article  Google Scholar 

  • Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Minchin, P.R., O’hara, R.R., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E & Wagner, H, 2017. Vegan: community ecology package. R package version 2.4–0

  • Oliveira, S. S., J. C. G. Ortega, L. G. S. Ribas, V. G. Lopes & L. M. Bini, 2020. Higher taxa are sufficient to represent biodiversity patterns. Ecological Indicators 111: 105994.

    Article  Google Scholar 

  • Ota, R. R., G. de C. Deprá, W. J. da Graça & C. S. Pavanelli, 2018. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes: revised, annotated and updated. Neotropical Ichthyology 16: 1–111.

    Article  Google Scholar 

  • Padial, A. A., S. M. Thomaz & A. A. Agostinho, 2009. Effects of structural heterogeneity provided by the floating macrophyte Eichhornia azurea on the predation efficiency and habitat use of the small Neotropical fish Moenkhausia sanctaefilomenae. Hydrobiologia 624: 161–170.

    Article  Google Scholar 

  • Pelicice, F. M. & A. A. Agostinho, 2006. Feeding ecology of fishes associated with Egeria spp. patches in a tropical reservoir, Brazil. Ecology of Freshwater Fish 15: 10–19.

    Article  Google Scholar 

  • Pérez, G. R., 1998. Guía para el estudio de los macroinvertebrados acuáticos del Departamento de Antioquia. Editorial Presencia, Colombia.

    Google Scholar 

  • Petry, P., P. B. Bayley & D. F. Markle, 2003. Relationships between fish assemblages, macrophytes and environmental gradients in the Amazon River floodplain. Journal of Fish Biology 63: 547–579.

    Article  Google Scholar 

  • Pielou, E. C, 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology 13: 131-144.

    Article  Google Scholar 

  • Prejs, A. & K. Prejs, 1987. Feeding of tropical freshwater fishes: seasonality in resource availability and resource use. Oecologia 71: 397–404.

    Article  CAS  PubMed  Google Scholar 

  • Priyadarshana, T., T. Asaeda & J. Manatunge, 2001. Foraging behaviour of planktivorous fish in artificial vegetation: the effects on swimming and feeding. Hydrobiologia 442: 231–239.

    Article  Google Scholar 

  • Quirino, B. A., N. Carniatto, R. Guglielmetti & R. Fugi, 2017. Changes in diet and niche breadth of a small fish species in response to the flood pulse in a Neotropical floodplain lake. Limnologica 62: 126–131.

    Article  Google Scholar 

  • Rejmankova, E., 2011. The role of macrophytes in wetland ecosystems. Journal of Ecology and Environment 34: 333–345.

    Article  Google Scholar 

  • Rennie, M. D. & L. J. Jackson, 2005. The influence of habitat complexity on littoral invertebrate distributions: patterns differ in shallow prairie lakes with and without fish. Canadian Journal of Fisheries and Aquatic Sciences 62: 2088–2099.

    Article  CAS  Google Scholar 

  • Sánchez-Botero, J. I. & C. A. R. M. Araújo-lima, 2001. As macrófitas aquáticas como berçário para a ictiofauna da várzea do rio Amazonas. Acta Amazonica 31: 437–447.

    Article  Google Scholar 

  • Sánchez-Botero, J. I., C. A. R. M. Araujo-Lima & D. S. Garcez, 2008. Effects of types of aquatic macrophyte stands and variations of dissolved oxygen and of temperature on the distribution of fishes in lakes of the amazonian floodplain. Acta Limnologica Brasiliensia 20: 45–54.

    Google Scholar 

  • Sánchez-Hernández, J., A. G. Finstad, J. V. Arnekleiv, G. Kjærstad & P. A. Amundsen, 2020. Beyond ecological opportunity: prey diversity rather than abundance shapes predator niche variation. Freshwater Biology 00: 1–18

    Google Scholar 

  • Schneider, B., E. R. Cunha, M. Marchese & S. M. Thomaz, 2018. Associations between macrophyte life forms and environmental and morphometric factors in a large sub-tropical floodplain. Frontiers in Plant Science 9: 1–10.

    Article  Google Scholar 

  • Schultz, R. & E. Dibble, 2012. Effects of invasive macrophytes on freshwater fish and macroinvertebrate communities: the role of invasive plant traits. Hydrobiologia 684: 1–14.

    Article  Google Scholar 

  • Shannon, C. E. & Weaver, W, 1949. The Mathematical Theory of Communication. Urbana, IL: University of Illinois Press.

    Google Scholar 

  • Sipaúba-Tavares, L. H., C. B. Anatriello, A. Milstein, R. N. Millan & B. Scardoeli-Truzzi, 2017. Macrophyte - environment relationships during a monospecific and a multispecific massive invasion in a fishpond. Tropical Plant Research 4: 471–479.

    Article  Google Scholar 

  • Stahr, K. J. & M. A. Kaemingk, 2017. An evaluation of emergent macrophytes and use among groups of aquatic taxa. Lake and Reservoir Management 33: 314–323.

    Article  Google Scholar 

  • Strayer, D. L. & H. M. Malcom, 2007. Submersed vegetation as habitat for invertebrates in the Hudson River estuary. Estuaries and Coasts 30: 253–264.

    Article  Google Scholar 

  • Strong, W. L., 2016. Biased richness and evenness relationships within Shannon-Wiener index values. Ecological Indicators 67: 703–713.

    Article  Google Scholar 

  • Stroud, J. T. & J. B. Losos, 2016. Ecological opportunity and adaptive radiation. Annual Review of Ecology, Evolution, and Systematics 47: 507–532

    Article  Google Scholar 

  • Sullivan, M. L., Y. Zhang & T. H. Bonner, 2014. Carbon and nitrogen ratios of aquatic and terrestrial prey for freshwater fishes. Journal of Freshwater Ecology 29: 259–266.

    Article  CAS  Google Scholar 

  • Svanbäck, R. & D. I. Bolnick, 2007. Intraspecific competition drives increased resource use diversity within a natural population. Proceedings of the Royal Society B: Biological Sciences 274: 839–844.

    Article  PubMed  Google Scholar 

  • Tang, Y., S. F. Harpenslager, M. M. L. Van Kempen, E. J. V. Verbaarschot, L. M. J. M. Loeffen, J. G. M. Roelofs, A. J. P. Smolders & L. P. M. Lamers, 2017. Aquatic macrophytes can be used for wastewater polishing but not for purification in constructed wetlands. Biogeosciences 14: 755–766.

    Article  CAS  Google Scholar 

  • Taniguchi, H., S. Nakano & M. Tokeshi, 2003. Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshwater Biology 48: 718–728.

    Article  Google Scholar 

  • Theel, H. J., E. D. Dibble & J. D. Madsen, 2008. Differential influence of a monotypic and diverse native aquatic plant bed on a macroinvertebrate assemblage; an experimental implication of exotic plant induced habitat. Hydrobiologia 600: 77–87.

    Article  Google Scholar 

  • Thomaz, S. M. & E. R. Cunha, 2010. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnologica Brasiliensia 22: 218–236.

    Article  Google Scholar 

  • Toft, J. D., C. A. Simenstad, J. R. Cordell & L. F. Grimaldo, 2003. The effects of introduced water hyacinth on habitat structure, invertebrate assemblages, and fish diets. Estuaries 26: 746–758.

    Article  Google Scholar 

  • Tóth, M., A. Móra, B. Kiss, G. Dévai & A. Specziár, 2012. Are macrophyte-dwelling chironomidae (Diptera) largely opportunistic in selecting plant species? European Journal of Entomology 109: 247–260.

    Article  Google Scholar 

  • Vermeij, G. J., 2016. Plant defences on land and in water: why are they so different? Annals of Botany 117: 1099–1109.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vilmi, A., S. M. Karjalainen, T. Nokela, K. Tolonen & J. Heino, 2016. Unravelling the drivers of aquatic communities using disparate organismal groups and different taxonomic levels. Ecological Indicators 60: 108–118.

    Article  Google Scholar 

  • Warfe, D. M. & L. A. Barmuta, 2004. Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141: 171–178.

    Article  PubMed  Google Scholar 

  • Wickham, H, 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.

    Book  Google Scholar 

  • Zhang, P., R. F. Van Den Berg, C. H. A. Van Leeuwen, B. A. Blonk & E. S. Bakker, 2018. Aquatic omnivores shift their trophic position towards increased plant consumption as plant stoichiometry becomes more similar to their body stoichiometry. PLoS ONE 13: 1–13.

    Google Scholar 

  • Zhang, M., Y. Wang, B. Gu, Y. Li, W. Zhu, L. Zhang, L. Yang & X. Li, 2019. Resources utilization and trophic niche between silver carp and bighead carp in two mesotrophic deep reservoirs. Journal of Freshwater Ecology 34: 199–212.

    Article  CAS  Google Scholar 

  • Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev & G. M. Smith, 2009. Limitations of linear regression applied on ecological data. In: M. Gail, K. Krickeberg, J. M. Samet, A. Tsiatis & W. Wong (eds), Mixed Effects Models and Extensions in Ecology with R. Springer, Springer, New York: 11-31.

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors thank S.M. Thomaz and M.S. Dainez for the help in sampling and identifying macrophytes. We also acknowledge Nupélia and its researchers, the Graduate Program in Ecology of Continental Aquatic Environments (UEM), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the financial support and infrastructure provided for the development of this study. We also thank three anonymous reviewers for their helpful comments

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the investigation: KYY, RF, BAQ, ALPC, MHFA. Performed field and/or laboratory work KYY, RF, BAQ, ALPC. Analyzed the data: KYY, RF, BAQ, ALPC, MHFA. Contributed materials, reagents, and/or analysis tools: KYY, RF, BAQ. Wrote the paper: KYY, RF.

Corresponding author

Correspondence to Katia Yasuko Yofukuji.

Additional information

Handling editor: Katya E. Kovalenko

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Supplementary material 2 (TIFF 3274 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yofukuji, K.Y., Cardozo, A.L.P., Quirino, B.A. et al. Macrophyte diversity alters invertebrate community and fish diet. Hydrobiologia 848, 913–927 (2021). https://doi.org/10.1007/s10750-020-04501-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04501-w

Keywords

Navigation