Skip to main content

Advertisement

Log in

The biogeographic history of the relictual Gondwanan lineage of Australian burrowing crayfish

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Biogeographic investigations of Gondwanan mesic Australian fauna are scarce. The burrowing clade of Australian freshwater crayfish represent an ideal group to provide biogeographic inferences, due to their extensive distribution across the continent and their presumed ancient origin. This study tested the competing hypotheses of a ‘early’ versus ‘late’ origin of this clade, coinciding with the early or late fragmentation of Gondwana, respectively. The biogeographic history of this group was investigated through: (a) examination of the phylogenetic relationships between the seven extant taxon groups; (b) reconstruction of four species trees, each using a different calibration method; and (c) reconstruction of ancestral ranges and correlation of estimated dispersal and vicariance events with historical geological data to propose plausible mechanisms responsible for driving diversification. The phylogenetic relationships between the taxon groups were generally well supported (although some uncertainty exists for the oldest genera), and all calibration methods produced concordant results. The hypothesis that the clade arose during the early fragmentation of Gondwana in southern Australia is supported. Divergence between the extant taxa likely resulted from a combination of both short- and long-distance dispersal events (often followed by later vicariance), coincident with phases of sea level oscillation and changing climate continuing into the Eocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The data that supports the findings of this study are available in the ‘Online Resources’ for this article.

References

  • Austin, C. M., T. T. Nguyen, M. M. Meewan & D. R. Jerry, 2003. The taxonomy and phylogeny of the ‘Cherax destructor’ complex (Decapoda: Parastacidae) examined using mitochondrial 16S sequences. Australian Journal of Zoology 51: 99–110.

    CAS  Google Scholar 

  • Blakey, R. C., 2008. Gondwana paleogeography from assembly to breakup – a 500 m.y. odyssey. In Fielding, C. R., T. D. Frank & J. L. Isbell (eds), Resolving the Late Paleozoic Ice Age in Time and Space: Geological Society of America Special Paper 441. The Geological Society of America, Boulder: 1–28.

    Google Scholar 

  • Buhay, J. E. & K. A. Crandall, 2005. Subterranean phylogeography of freshwater crayfishes shows extensive gene flow and surprisingly large population sizes. Molecular Ecology 14: 4259–4273.

    CAS  PubMed  Google Scholar 

  • Buhay, J. E., G. Moni, N. Mann & K. A. Crandall, 2007. Molecular taxonomy in the dark: evolutionary history, phylogeography, and diversity of cave crayfish in the subgenus Aviticambarus, genus Cambarus. Molecular Phylogenetics and Evolution 42: 435–448.

    CAS  PubMed  Google Scholar 

  • Burnham, Q., 2014. Systematics and biogeography of the Australian burrowing freshwater crayfish genus Engaewa Riek (Decapoda: Parastacidae). Unpublished Ph.D. Thesis., Edith Cowan University, Australia.

  • Byrne, M., D. A. Steane, L. Joseph, D. K. Yeates, G. J. Jordan, D. Crayn, K. Aplin, D. J. Cantrill, L. G. Cook, M. D. Crisp, J. S. Keogh, J. Melville, C. Moritz, N. Porch, J. M. K. Sniderman, P. Sunnucks & P. H. Weston, 2011. Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. Journal of Biogeography 38: 1635–1656.

    Google Scholar 

  • Crandall, K. A. & J. E. Buhay, 2008. Global diversity of crayfish (Astacidae, Cambaridae, and Parastacidae – Decapoda) in freshwater. Hydrobiologia 595: 295–301.

    Google Scholar 

  • Crandall, K. A., J. W. Fetzner, S. H. Lawler, M. Kinnersley & C. M. Austin, 1999. Phylogenetic relationships among the Australian and New Zealand genera of freshwater crayfishes (Decapoda: Parastacidae). Australian Journal of Zoology 47(2): 199–214.

    Google Scholar 

  • Crandall, K. A., D. J. Harris & J. W. Fetzner, 2000. The monophyletic origin of freshwater crayfish estimated from nuclear and mitochondrial DNA sequences. Proceedings of the Royal Society London B 267(1453): 1679–1686.

    CAS  Google Scholar 

  • Dawkins, K. L., J. M. Furse, C. H. Wild & J. M. Hughes, 2017. A novel genus and cryptic species harboured within the monotypic freshwater crayfish genus Tenuibranchiurus Riek, 1951 (Decapoda: Parastacidae). PeerJ 5: e3310.

    PubMed  PubMed Central  Google Scholar 

  • Drummond, A. J. & A. Rambaut, 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214–222.

    PubMed  PubMed Central  Google Scholar 

  • Drummond, A. J., M. A. Suchard, D. Xie & A. Rambaut, 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fawcett, P. J., E. J. Barron, V. D. Robinson & B. J. Katz, 1994. The climatic evolution of India and Australia from the late permian to mid-Jurrasic: a comparison of climate model results with the geological record. In Klein, G. O. (ed.), Pangea: Paleoclimate, Tectonics, and Sedimentation During Accretion, Zenith, and Breakup of a Supercontinent. The Geological Society of America Inc, Boulder: 139–158.

    Google Scholar 

  • Fetzner, J. W. & K. A. Crandall, 2003. Linear habitats and the nested clade analysis: an empirical evaluation of geographic versus river distances using an Ozark crayfish (Decapoda: Cambaridae). Evolution 57(9): 2101–2118.

    CAS  PubMed  Google Scholar 

  • Frakes, L. A., 1997. Grossplots: a method for estimating the temperature state of the earth and of Australia, Cretaceous to Middle Miocene. Australian Journal of Botany 45: 359–372.

    Google Scholar 

  • Frakes, L. A., D. Burger, M. Apthorpe, J. Wiseman, M. Dettmann, N. Alley, R. Flint, D. Gravestock, N. Ludbrook, J. Backhouse, S. Skwarko, V. Scheibnerova, A. McMinn, P. S. Moore, B. R. Bolton, J. G. Douglas, R. Christ, M. Wade, R. E. Molnar, B. McGowran, B. E. Balme & R. A. Day, 1987. Australian cretaceous shorelines, stage by stage. Palaeogeography, Palaeoclimatology, Palaeoecology 59: 31–48.

    Google Scholar 

  • Hansen, B. & A. M. M. Richardson, 2002. Geographic ranges, sympatry and the influence of environmental factors on the distribution of species of an endemic Tasmanian freshwater crayfish. Invertebrate Systematics 16: 621–629.

    Google Scholar 

  • Haq, B. Q., J. Hardenbol & P. R. Vail, 1987. Chronology of fluctuating sea levels since the triassic. Science 235: 1156–1167.

    CAS  PubMed  Google Scholar 

  • Harris, P., A. Heap, V. Passlow, L. Sbaffi, M. Fellows, R. Porter-Smith, C. Buchanon & J. Daniell, 2005. Geomorphic Features of the Continental Margin of Australia. Geoscience Australia, Record 2003/30.

  • Hill, R. S., 2004. Origins of the southeastern Australian vegetation. Philosophical Transactions of the Royal Society of London B 359: 1537–1549.

    Google Scholar 

  • Holthius, L. B., 1986. The freshwater crayfish of New Guinea. Freshwater Crayfish 6: 48–58.

    Google Scholar 

  • Horwitz, P., 1988. Sea-level fluctuations and the distributions of some freshwater crayfishes of the genus Engaeus (Decapoda; Parastacidae) in the Bass Strait area. Australian Journal of Marine and Freshwater Research 39: 497–502.

    Google Scholar 

  • Hughes, J. M. & M. J. Hillyer, 2003. Patterns of connectivity among populations of Cherax destructor (Decapoda: Parastacidae) in western Queensland, Australia. Marine and Freshwater Research 54: 587–596.

    Google Scholar 

  • Hughes, J. M., J. A. Huey & D. J. Schmidt, 2013. Is realised connectivity among populations of aquatic fauna predictable from potential connectivity? Freshwater Biology 58: 951–966.

    Google Scholar 

  • Hurwood, D. A. & J. M. Hughes, 1998. Phylogeography of the freshwater fish, Mogurnda adspersa, in streams of northeastern Queensland, Australia: evidence for altered drainage patterns. Molecular Ecology 7: 1507–1517.

    CAS  PubMed  Google Scholar 

  • Jones, J. G. & J. J. Veevers, 1982. A Cainozoic history of Australia’s southeast highlands. Journal Geological Society of Australia 29(1–2): 1–12.

    Google Scholar 

  • Katoh, K. & D. M. Standley, 2013. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Molecular Biology and Evolution 30(4): 772–780.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koizumi, I., N. Usio, T. Kawai, N. Azuma & R. Masuda, 2012. Loss of genetic diversity means loss of geological information: the endangered japanese crayfish exhibits remarkable historical footprints. PLoS ONE 7(3): e33986.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larson, E. R., M. Castelin, B. W. Williams, J. D. Olden & C. L. Abbott, 2016. Phylogenetic species delimitation for crayfishes of the genus Pacifastacus. PeerJ 4: e1915.

    PubMed  PubMed Central  Google Scholar 

  • Martin, H. A., 2006. Cenozoic climatic change and the development of the arid vegetation in Australia. Journal of Arid Environments 66(3): 533–536.

    Google Scholar 

  • Martin, A. J., T. H. Rich, G. C. B. Poore, M. B. Schultz, C. M. Austin, L. Kool & P. Vickers-Rich, 2008. Fossil evidence in Australia for oldest known freshwater crayfish of Gondwana. Gondwana Research 14: 187–296.

    Google Scholar 

  • Miller, M. A., W. Pfeiffer & T. Schwartz, 2010. Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. New Orleans, LA.

  • Mills, B. J., N. M. Morrissey & J. V. Huner, 1994. Cultivation of freshwater crayfish in Australia. In Huner, J. V. (ed.), Freshwater Crayfish Aquaculture in North America, Europe and Australia. Food Product Press, New York: 312 p.

  • Munasinghe, D. H. N., C. P. Burridge & C. M. Austin, 2004. Molecular phylogeny and zoogeography of the freshwater crayfish genus Cherax Erichson (Decapoda: Parastacidae) in Australia. Biological Journal of the Linnean Society 81: 553–563.

    Google Scholar 

  • Nguyen, T. T., C. M. Austin, M. M. Meewan, M. B. Schultz & D. R. Jerry, 2004. Phylogeography of the freshwater crayfish Cherax destructor Clark (Parastacidae) in inland Australia: historical fragmentation and recent range expansion. Biological Journal of the Linnean Society 83: 539–550.

    Google Scholar 

  • Owen, C. L., H. Bracken-Grissom, D. Stern & K. A. Crandall, 2015. A synthetic phylogeny of freshwater crayfish: insights for conservation. Philosophical Transactions of the Royal Society B 370: 20140009.

    Google Scholar 

  • Ponniah, M. & J. M. Hughes, 2004. The evolution of Queensland spiny mountain crayfish of the genus Euastacus. I. Testing vicariance and dispersal with interspecific mitochondrial DNA. Evolution 58(5): 1073–1085.

    PubMed  Google Scholar 

  • Ponniah, M. & J. M. Hughes, 2006. The evolution of Queensland spiny mountain crayfish of the genus Euastacus. II. Investigating simultaneous vicariance with intraspecific genetic data. Marine and Freshwater Research 57: 349–362.

    CAS  Google Scholar 

  • Porter, M. L., M. Perez-Losada & K. A. Crandall, 2005. Model-based multi-locus estimation of decapod phylogeny and divergence times. Molecular Phylogenetics and Evolution 37: 355–369.

    CAS  PubMed  Google Scholar 

  • Posada, D., 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.

    CAS  PubMed  Google Scholar 

  • Quilty, P. G., 1984. Mesozoic and Cenozoic history of Australia as it affects the Australian biota. In Cogger, H. G. & E. E. Cameron (eds), Arid Australia. Australian Museum, Sydney: 7–55.

    Google Scholar 

  • Quilty, P. G., 1994. The backgroud: 144 million years of Australian palaeoclimate and palaegeography. In Hill, R. S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge University Press, Cambridge: 14–43.

    Google Scholar 

  • Rambaut, A., 2012. Figtree version 1.4.0. [available on internet at http://tree.bio.ed.ac.uk/software/figtree/.In].

  • Rambaut, A., A. J. Drummond, D. Xie, G. Baele & M. A. Suchard, 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riek, E. F., 1969. The Australian freshwater crayfish (Crustacea: Decapoda: Parastacidae), with descriptions of new species. Australian Journal of Zoology 17: 855–918.

    Google Scholar 

  • Ronquist, F., 2004. Bayesian inference of character evolution. TRENDS in Ecology & Evolution 19(9): 475–481.

    Google Scholar 

  • Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard & J. P. Huelsenbeck, 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542.

    PubMed  PubMed Central  Google Scholar 

  • Schubart, C. D., R. Diesel & S. B. Hedges, 1998. Rapid evolution to terrestrial life in Jamaican crabs. Nature 393: 363–365.

    CAS  Google Scholar 

  • Schultz, M. B., S. A. Smith, A. M. M. Richardson, P. Horwitz, K. A. Crandall & C. M. Austin, 2007. Cryptic diversity in Engaeus Erichson, Geocharax Clark and Gramastacus Riek (Decapoda:Parastacidae) revealed by mitochondrial 16S rDNA sequences. Invertebrate Systematics 21(6): 569–587.

    Google Scholar 

  • Schultz, M. B., S. A. Smith, P. Horwitz, A. M. M. Richardson, K. A. Crandall & C. M. Austin, 2009. Evolution underground: a molecular phylogenetic investigation of Australian burrowing freshwater crayfish (Decapoda: Parastacidae) with particular focus on Engaeus Erichson. Molecular Phylogenetics and Evolution 50(3): 580–598.

    CAS  PubMed  Google Scholar 

  • Sinclair, E. A., J. W. Fetzner, J. Buhay & K. A. Crandall, 2004. Proposal to complete a phylogenetic taxonomy and systematic revision for freshwater crayfish (Astacidea). Freshwater Crayfish 14: 21–29.

    Google Scholar 

  • Sluijs, A., P. K. Bijl, S. Schouten, U. Rohl, G.-J. Reichart & H. Brinkhuis, 2011. Southern ocean warming, sea level and hydrological change during the Paleocene-Eocene thermal maximum. Climate of the Past 7: 47–61.

    Google Scholar 

  • Stamatakis, A., 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.

    CAS  PubMed  Google Scholar 

  • Stamatakis, A., P. Hoover & J. Rougemont, 2008. A fast bootstrapping algorithm for the RAxML Web-Servers. Systematic Biology 57(5): 758–771.

    PubMed  Google Scholar 

  • Stillman, J. H. & C. A. Reeb, 2001. Molecular phylogeny of eastern Pacific porcelain crabs, genera Petrolisthes and Pachycheles, based on the mtDNA 16S rDNA sequence: phylogeographic and systematic implications. Molecular Phylogenetics and Evolution 19(2): 236–245.

    CAS  PubMed  Google Scholar 

  • Stöver, B. C. & K. F. Müller, 2010. TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11: Article 7. https://doi.org/10.1186/1471-2105-11-7.

  • Sturmbauer, C., J. S. Leninton & J. Christy, 1996. Molecular phylogeny analysis of fiddler crabs: test of the hypothesis of increasing behavioral complexity in evolution. Proceedings of the National Academy of Sciences USA 93: 10855–10857.

    CAS  Google Scholar 

  • Swofford, D. L., 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.

  • Thacker, C. E., P. J. Unmack, L. Matsui & N. Rifenbark, 2007. Comparative phylogeography of five sympatric Hypseleotris species (Teleostei: Eleotridae) in south-eastern Australia reveals a complex pattern of drainage basin exchanges with little congruence across species. Journal of Biogeography 34: 1518–1533.

    Google Scholar 

  • Toon, A., M. Perez-Losoda, C. E. Schweitzer, R. W. Feldman, M. Carlson & K. A. Crandall, 2010. Gondwanan radiation of the Southern Hemisphere crayfishes (Decapoda: Parastacidae): evidence from fossils and molecules. Journal of Biogeography 37: 2275–2290.

    Google Scholar 

  • Twidale, C. R., 1994. Gondwanan (Late Jurassic and Cretaceous) palaeosurfaces of the Australian craton. Palaeogeography, Palaeoclimatology, Palaeoecology 112: 157–186.

    Google Scholar 

  • Unmack, P. J., 2001. Biogeography of Australian freshwater fishes. Journal of Biogeography 28: 1053–1089.

    Google Scholar 

  • Veevers, J. J., 1991. Mid-Cretaceous tectonic climax, Late Cretaceous recovery, and Cainozoic relaxation in the Australian region. In Williams, M. A. J., P. De Deckker & A. P. Kershaw (eds) The Cainozoic in Australia: A Re-appraisal of the Evidence Geological Society of Australia, Sydney: 1–14.

  • Veevers, J. J., 2004. Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangea to 185–100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth-Science Reviews 68: 1–132.

    Google Scholar 

  • Veevers, J. J., 2006. Updated Gondwana (Permian–Cretaceous) earth history of Australia. Gondwana Research 9: 231–260.

    Google Scholar 

  • Xia, X., 2013. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/mst064.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, Y., A. J. Harris & X.-J. He, 2013. RASP (Reconstruct Ancestral State in Phylogenies) 2.1 beta [available on internet at http://mnh.scu.edu.cn/soft/blog/RASP].

  • Yu, Y., A. J. Harris & X.-J. He, 2010. S-DIVA (statistical dispersal-vicariance analysis): a tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution 56(2): 848–850.

    PubMed  Google Scholar 

Download references

Acknowledgements

Dr Andrew Bentley provided invaluable advice regarding species tree reconstructions. Dr Quinton Burnham provided helpful comments that improved the manuscript. Prof Clyde Wild provided advice during earlier stages of this project. This study was part of a project funded by an Australian Postgraduate Award. Australian Rivers Institute at Griffith University provided additional funding and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn L. Dawkins.

Additional information

Handling editor: Diego Fontaneto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dawkins, K.L., Furse, J.M. & Hughes, J.M. The biogeographic history of the relictual Gondwanan lineage of Australian burrowing crayfish. Hydrobiologia 848, 403–420 (2021). https://doi.org/10.1007/s10750-020-04448-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04448-y

Keywords

Navigation