Skip to main content
Log in

Impacts of nitrogen loads on the water and biota in a karst river (Loue River, France)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We measured nitrate in water (n = 4762) and nitrogen stable isotopes (δ15N) (n = 353) of macroalgae and macroinvertebrates at different sites in a French karst river (Loue River) which has moderate nitrogen loading (~ 23 kg nitrogen ha−1 year−1). The main objective was to estimate whether nitrate in water and nitrogen stable isotopes of the biota could allow identification of the spatial and temporal variations in agriculture-related nitrogen losses to the river. Highest nitrate concentrations (> 90% quantile) increased significantly over the last three decades but mean nitrate concentrations did not change significantly. Nitrate and biota δ15N values tended to increase from upstream to downstream, although the δ15N values decreased in the most downstream sites. Generalized additive mixed models allowed the identification of clear matching annual patterns of nitrate and biota δ15N values characterized by recurrent autumn to winter maxima, supporting that agricultural nitrogen export and its assimilation within the river biota would mostly occur during the autumn and winter seasons. Overall, our results highlight the high vulnerability of karst river to nitrogen-related eutrophication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aberle, N. & A. Malzahn, 2007. Interspecific and nutrient-dependent variations in stable isotope fractionation: experimental studies simulating pelagic multitrophic systems. Oecologia 154: 291–303.

    CAS  PubMed  Google Scholar 

  • Anderson, C. & G. Cabana, 2005. δ15N in riverine food webs: effects of N inputs from agricultural watersheds. Canadian Journal of Fisheries and Aquatic Sciences 62: 333-340.

    CAS  Google Scholar 

  • Anderson, C. & G. Cabana, 2006. Does δ15N in river food webs reflect the intensity and origin of N loads from the watershed? Science of the Total Environment 367: 968-978

    CAS  Google Scholar 

  • Anderson, C. & G. Cabana, 2007. Estimating the trophic position of aquatic consumers in river food webs using stable nitrogen isotopes. Journal of the North American Benthological Society 26: 273–285.

    CAS  Google Scholar 

  • Agreste Franche-Comté, 2014. Enquête pratiques culturales 2011, vol. 192: 6 pp. www.agreste.agriculture.gouv.fr/en-region/bourgogne-franche-comte/.

  • American Public Health Association (APHA), 2006. Standard Methods for Examination of Water and Wastewater, 20th edn. Island Press, Washington, DC.

    Google Scholar 

  • Atkinson, C. L., A. D. Christian, D. E. Spooner & C. C. Vaughn, 2013. Long-lived organisms provide an integrative footprint of agricultural land use. Ecological Applications 24: 375-384.

    Google Scholar 

  • Bakalowicz, M. 2005. Karst groundwater: a challenge for new resources. Hydrogeology Journal 13: 148–160.

    CAS  Google Scholar 

  • Begon, M., C. R. Townsend & J. L. Harper, 2006. Ecology: From Individuals to Ecosystems, 4th edn. Blackwell, London.

    Google Scholar 

  • Bernhardt, E. S., G. E. Likens, J. Hall, O. Robert, D. C. Buso, S. G. Fisher, T. M. Burton & W. H. Lowe, 2005. Can't see the forest for the stream? In-stream processing and terrestrial nitrogen exports. BioScience 55: 219-230.

    Google Scholar 

  • Bloor, J. M. G. & R. D. Bardgett, 2012. Stability of above-ground and below-ground processes to extreme drought in model grassland ecosystems: interactions with plant species diversity and soil nitrogen availability. Perspectives in Plant Ecology, Evolution and Systematics 14: 193–204.

    Google Scholar 

  • Cabana, G. & J. B. Rasmussen, 1996. Comparison of aquatic food chains using nitrogen isotopes. Proceedings of the National Academy of Sciences of the United States of America 93: 10844-10847.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, C. Y., C. Kendall, S. R. Silva, W. A. Battaglin & D. H. Campbell, 2002. Nitrate stable isotopes: tools for determining nitrate sources among different land uses in the Mississippi River Basin. Canadian Journal of Fisheries and Aquatic Sciences 59: 1874-1885.

    CAS  Google Scholar 

  • Charlier, J.-B., J.-F. Desprats & B. Ladouche, 2014. Appui au SCHAPI 2014 – Module 1 – Rôle et contribution des eaux souterraines d’origine karstique dans les crues de la Loue à Chenecey-Buillon, Rapport BRGM/RP-63844-FR: 109 pp. https://infoterre.brgm.fr/rapports/RP-63844-FR.pdf.

  • Charlier, J.-B., A. Vallet, G. Hévin & F. Moiroux, 2018. Projet QUARSTIC : QUAlité des eaux et Réseau de Surveillance des rIvières Comtoises. Rapport final. BRGM/RP-68315-FR: 165 pp. https://infoterre.brgm.fr/rapports/RP-68315-FR.pdf.

  • Cholet, C., M. Steinmann, J.-B. Charlier & S. Denimal, 2019. Characterizing fluxes of trace metals related to dissolved and suspended matter during a storm event: application to a karst aquifer using trace metals and rare earth elements as provenance indicators. Hydrogeology Journal 27: 305–319.

    CAS  Google Scholar 

  • Cole, M. L., I. Valiela, K. D. Kroeger, G. L. Tomasky, J. Cebrian, C. Wigand & M. H. C. da Silva, 2004. Assessment of a δ15N isotopic method to indicate anthropogenic eutrophication in aquatic ecosystems. Journal of Environmental Quality 33: 124-132.

    CAS  PubMed  Google Scholar 

  • Cole, M. L., K. D. Kroeger, J. W. McClelland & I. Valiela, 2005. Macrophytes as indicators of land-derived wastewater: application of a δ15N method in aquatic systems. Water Resources Research 41: W01014.

    Google Scholar 

  • Correa, C. 2012. Tissue preservation biases in stable isotopes of fishes and molluscs from Patagonian lakes. Journal of Fish Biology 81: 2064-2073.

    CAS  PubMed  Google Scholar 

  • Costanzo, S. D., J. Udy, B. Longstaff & A. Jones, 2005. Using nitrogen stable isotope ratios (δ15N) of macroalgae to determine the effectiveness of sewage upgrades: changes in the extent of sewage plumes over four years in Moreton Bay, Australia. Marine Pollution Bulletin 51: 212-217.

    CAS  PubMed  Google Scholar 

  • Davis, J. L. & G. R. Shaw, 2006. Impacts of eutrophication on the safety of drinking and recreational water. In Grabow, W. (ed.), Encyclopedia of Life Support Systems (EOLSS). University of Pretoria, South Africa.

    Google Scholar 

  • De Brabandere, L., T. K. Frazer & J. P. Montoya, 2007. Stable nitrogen isotope ratios of macrophytes and associated periphyton along a nitrate gradient in two subtropical, spring-fed streams. Freshwater Biology 52: 1564–1575.

    Google Scholar 

  • Delong, M. D. & J. H. Thorp, 2006. Significance of instream autotrophs in trophic dynamics of the Upper Mississippi River. Oecologia 147(1): 76-85.

    PubMed  Google Scholar 

  • Diebel, M. W. & M. J. Vander Zanden, 2009. Nitrogen stable isotopes in streams: effects of agricultural sources and transformations. Ecological Applications 19: 1127-1134.

    PubMed  Google Scholar 

  • Evans, D., 2007. Soil nitrogen isotope composition. In Mitchener, R. & K. Lajtha (eds), Stable Isotopes in Ecology and Environmental Science. Blackwell, Oxford: 111-124.

    Google Scholar 

  • Finlay, J. & C. Kendall, 2007. Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. In Mitchener, R. & K. Lajtha (eds), Stable Isotopes in Ecology and Environmental Science. Blackwell, Oxford: 283-324.

    Google Scholar 

  • Finlay, J., S. Khandwala & M. Power, 2002. Spatial scales of carbon flow in a river food web. Ecology 83: 1845-1859.

    Google Scholar 

  • Frossard, V., 2006. Etude des proliférations algales sur la Loue: Eté 2006. Master QTEBV Univ. Fr. Comte: 50 pp.

  • Frossard, V., S. Versanne-Janodet & L. Aleya, 2014. Factors supporting harmful macroalgal blooms in flowing waters: a 2-year study in the Lower Ain River, France. Harmful Algae 33: 19-28.

    Google Scholar 

  • Galloway, J. N., F. J. Dentener, D. G. Capone, E. W. Boyer, R. W. Howarth, S. P. Seitzinger & C. J. Vöosmarty, 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70: 153-226.

    CAS  Google Scholar 

  • Galloway, J. N., A. R. Townsend, J. W. Erisman, M. Bekunda, Z. Cai, J. R. Freney & M. A. Sutton, 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320: 889-892.

    CAS  PubMed  Google Scholar 

  • Giraudoux, P., 2018. pgirmess: Spatial Analysis and Data Mining for Field Ecologists. R package version 1.6.9. https://CRAN.R-project.org/package=pgirmess.

  • Grolemund, G. & H. Wickham, 2011. Dates and times made easy with lubridate. Journal of Statistical Software 40: 1-25.

    Google Scholar 

  • Hastie, T. & R. Tibshirani, 1990. Generalized Additive Models. Chapman and Hall, London.

    Google Scholar 

  • He, Q., P. Yang, W. Yuan, Y. Jiang, J. Pu, Yuan, D. & Y. Kuang, 2010. The use of nitrate, bacteria and fluorescent tracers to characterize groundwater recharge and contamination in a karst catchment, Chongqing, China. Hydrogeology Journal 18: 1281–1289.

    CAS  Google Scholar 

  • Henry, P. & V. Frossard, 2014. Eutrophisation de la Loue: Quantification des flux et des sources d'azote et de phosphore du bassin versant. Bulletin de la Société d'Histoire Naturelle du Doubs 94: 23-34.

    Google Scholar 

  • Herwig, B. R., D. H. Wahl, J. M. Dettmers & D. A. Soluk, 2007. Spatial and temporal patterns in the food web structure of a large floodplain river assessed using stable isotopes. Canadian Journal of Fisheries and Aquatic Sciences 64: 495-508.

    CAS  Google Scholar 

  • Howarth, R. W., G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J. A. Downing, R. Elmgren, N. Caraco, T. Jordan, F. Berendse, J. Freney, V. Kudeyarov, P. Murdoch & Z. Zhao-Liang, 1996. Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35: 75-139.

    CAS  Google Scholar 

  • Huebsch, M., O. Fenton, B. Horan, D. Hennessy, K. G. Richards, P. Jordan, N. Goldscheider, C. Butscher & P. Blum, 2014. Mobilisation or dilution? Nitrate response of karst springs to high rainfall events. Hydrology and Earth System Sciences 18 : 4423–4435.

    Google Scholar 

  • Jacquet, S., I. Domaizon & O. Anneville, 2014. The need for ecological monitoring of freshwaters in a changing world: a case study of Lakes Annecy, Bourget, and Geneva. Environmental Monitoring and Assessment 186: 3455-3476.

    PubMed  Google Scholar 

  • Jenny, J.-P., A. Normandeau, P. Francus, Z. E. Taranu, I. Gregory-Eaves, F. Lapointe & B. Zolitschka, 2016. Urban point sources of nutrients were the leading cause for the historical spread of hypoxia across European lakes. Proceedings of the National Academy of Sciences of the United States of America 45: 12655–12660.

    Google Scholar 

  • Jordan, T. E., D. L. Correll & D. E. Weller, 1997. Relating nutrient discharges from watersheds to land use and streamflow variability. Water Resources Research 33: 2579-2590.

    CAS  Google Scholar 

  • Keeney, D. R. & T. H. DeLuca, 1993. Des Moines River Nitrate in Relation to Watershed Agricultural Practices: 1945 Versus 1980s. Journal of environmental Quality 22: 267-272.

    CAS  Google Scholar 

  • Kendall, C. & J. McDonnell, 1998. Isotope Tracers in Catchment Hydrology. Elsevier, Amsterdam: 519-576.

    Google Scholar 

  • Kürten, B., I. Frutos, U. Struck, S. J. Painting, N. V. C. Polunin & J. J. Middelburg, 2012. Trophodynamics and functional feeding groups of North Sea fauna: a combined stable isotope and fatty acid approach. Biogeochemistry 113: 189-212.

    Google Scholar 

  • Lake, J. L., R. A. McKinney, F. A. Osterman, R. J. Pruell, J. Kiddon, S. A. Ryba & A. D. Libby, 2001. Stable nitrogen isotopes as indicators of anthropogenic activities in small freshwater systems. Canadian Journal of Fisheries and Aquatic Sciences 58: 870-878.

    CAS  Google Scholar 

  • Lapointe, B. & J. O'Connell, 1989. Nutrient-enhanced growth of Cladophora prolifera in Harrington sound, Bermuda: Eutrophication of a confined, phosphorus-limited marine ecosystem. Estuarine, Coastal and Shelf Science 28: 347-360.

    CAS  Google Scholar 

  • Mahler B., D. Valdes, M. Musgrove & N. Massei, 2008. Nutrient dynamics as indicators of karst processes: comparison of the chalk aquifer (Normandy, France) and the Edwards aquifer (Texas, USA). Journal of Contaminant Hydrology 98: 36–49.

    CAS  PubMed  Google Scholar 

  • Mayer, B., E. Boyer, C. Goodale, N. Jaworski, N. van Breemen, R. Howarth, S. Seitzinger, G. Billen, K. Lajtha, K. Nadelhoffer, D. Van Dam, L. Hetling, M. Nosal & K. Paustian, 2002. Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: isotopic constraints. Biogeochemistry, 57-58: 171-197.

    Google Scholar 

  • McClelland, J., I. Valiela & R. Michener, 1997. Nitrogen-stable isotope signatures in estuarine food webs: A record of increasing urbanization in coastal watersheds. Limnology and Oceanography 42: 930-937.

    CAS  Google Scholar 

  • McClelland, J. W. & I. Valiela, 1998. Linking nitrogen in estuarine producers to land-derived sources. Limnology and Oceanography 43: 577-585.

    CAS  Google Scholar 

  • McLeod, A. I., 2011. Kendall: Kendall Rank Correlation and Mann-Kendall Trend Test. R package version 2.2-6. https://CRAN.R-project.org/package=Kendall.

  • Mehler, K., K. Acharya, D. Sada & Z. Yu, 2013. Elemental stoichiometry of basal resources and benthic macroinvertebrates along a land use gradient in a Great Basin watershed. Hydrobiologia 716: 115-129.

    CAS  Google Scholar 

  • Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America, 3rd edn. Kendal/Hunt Publishing Company, Dubuque.

    Google Scholar 

  • Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-Being: Synthesis. Washington, DC: Island Press.

    Google Scholar 

  • Minagawa, M. & E. Wada, 1984. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48: 1135-1140.

    CAS  Google Scholar 

  • Montoya, J. P. & J. J. McCarthy, 1995. Isotopic fractionation during nitrate uptake by phytoplankton grown in continuous culture. Journal of Plankton Research 17: 439-464.

    CAS  Google Scholar 

  • Morrissey, C., C. Boldt, A. Mapstone, J. Newton & S. Ormerod, 2012. Stable isotopes as indicators of wastewater effects on the macroinvertebrates of urban rivers. Hydrobiologia 700: 231-244.

    Google Scholar 

  • Mudarra, M., B. Andreo & J. Mudry, 2012. Monitoring groundwater in the discharge area of a complex karst aquifer to assess the role of the saturated and unsaturated zones. Environmental Earth Science 65: 2321–2336.

    Google Scholar 

  • Nisbet, M. & J. Verneaux, 1970. Composantes chimiques des eaux courantes : Discussion et propositions de classe en tant que bases d'interprétations d'analyses chimiques. Annales de Limnologie 6: 161-166.

    Google Scholar 

  • Nordström, M., K. Aarnio & E. Bonsdorff, 2009. Temporal variability of a benthic food web: patterns and processes in a low-diversity system. Marine Ecology Progress Series 378: 13-26.

    Google Scholar 

  • Petersen, C. R., N. Z. Jovanovic, M. C. Grenfell, P. J. Oberholster & P. Cheng, 2018. Responses of aquatic communities to physical and chemical parameters in agriculturally impacted coastal river systems. Hydrobiologia 813: 157-175.

    CAS  Google Scholar 

  • Ponsard, S. & R. Arditi, 2000. What can stable isotopes (δ15N and δ13C) tell about the food web of soil macro-invertebrates? Ecology 81: 852–864.

    Google Scholar 

  • Pretty, J. N., C. Brett, D. Gee, R. E. Hine, C. F. Mason, J. I. L. Morison, H. Raven, M. D. Rayment & G. van der Bijl, 2000. An assessment of the total external costs of UK agriculture. Agricultural Systems 65: 113-136.

    Google Scholar 

  • Qin, B., G. Zhu, G. Gao, Y. Zhang, W. Li, H. W. Paerl & W. W. Carmichael, 2010. A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environmental Management 45: 105-112.

    PubMed  Google Scholar 

  • R Development Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. https://www.R-project.org/.

  • Russell, K. M., J. N. Galloway, S. A. Macko, J. L. Moody & J. R. Scudlark, 1998. Sources of nitrogen in wet deposition to the Chesapeake Bay region. Atmospheric Environment 32: 2453-2465.

    CAS  Google Scholar 

  • Sarakinos, H. C., M. L. Johnson & M. J. Vander Zanden, 2002. A synthesis of tissue-preservation effects on carbon and nitrogen stable isotope signatures. Canadian Journal of Zoology 80: 381-387.

    Google Scholar 

  • Savic, A., D. Dmitrovic & V. Pesic, 2017. Ephemeroptera, Plecoptera, and Trichoptera assemblages of karst springs in relation to some environmental factors: a case study in central Bosnia and Herzegovina. Turkish Journal of Zoology 41: 119-112.

    Google Scholar 

  • Sayer, J., T. Sunderland, J. Ghazoul, J.-L. Pfund, D. Sheil, E. Meijaard & L. E. Buck, 2013. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proceedings of the National Academy of Sciences of the United States of America 110: 8349-8356.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schindler, D. W., 2006. Recent advances in the understanding and management of eutrophication. Limnology and Oceanography 51: 356-363.

    Google Scholar 

  • Seq-Eau (V2), 2003. Système d'évaluation de la qualité de l'eau des cours d'eau. MEDD and Agences de l’eau: 40 pp.

  • Siegel, S. & R. Castellan, 1988. Non Parametric Statistics for the Behavioural Sciences. McGraw Hill, New York: 213-214.

    Google Scholar 

  • Span, D., J. Dominik, J. L. Loizeau, P. Arpagaus & J. P. Vernet, 1994. Phosphorus evolution in three sub-alpine lakes: Annecy, Geneva and Lugano: influence of lake restoration managements. Eclogae Geologicae Helvetiae 87: 369-383.

    Google Scholar 

  • Tachet, H., P. Richoux, M. Bournaud & P. Ussegli-Polatera, 2010. Invertébrés d’eau douce – Systématique, biologie, écologie. CNRS Editions, Paris: 588 pp.

    Google Scholar 

  • van Rij, J., M. Wieling, R. Baayen & H. van Rijn, 2017. itsadug: Interpreting Time Series and Autocorrelated Data Using GAMMs. R Package Version 2.3.

  • Vander Zanden, M. & J. Rasmussen, 2001. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnology and Oceanography 46:2061-2066.

    CAS  Google Scholar 

  • Vander Zanden, M., Y. Vadeboncoeur, M. Diebel & E. Jeppesen, 2005. Primary consumer stable nitrogen isotopes as indicators of nutrient source. Environmental. Science and Technology 39: 7509-7515.

    CAS  PubMed  Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S. Springer, New York. ISBN 0-387-95457-0.

  • Villeneuve, A., J.-F. Humbert, B. Berrebi, A. Devaux, P. Gaudin, F. Pozet, N. Massei, J. Mudry, D. Trevisan, G. Lacroix, G. Bornette & V. Verneaux, 2012. Rapport d’expertise sur les mortalités de poissons et les efflorescences de cyanobactéries de la Loue: Étude du fonctionnement de la Loue et de son Bassin Versant. Bioemco ONEMA: 42 pp.

  • Wada E., 1980. Nitrogen isotope fractionation and its significance in biogeochemical processes occurring in marine environments. In Goldberg, E. D., Y. Horibe & K. Saruhashi (eds.), Isotope Marine Chemistry. Uchida Rokakuho Publishing Co Ltd., Tokyo: 375–398.

    Google Scholar 

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems, 3rd edn. Academic Press, London.

    Google Scholar 

  • WFD, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 on establishing a framework for community action in the field of water policy. The European Journal of Communication L327: 1-72.

    Google Scholar 

  • Williams, P. W., 1983. The role of the subcutaneous zone in karst hydrology. Journal of Hydrology 61: 45 -67.

    Google Scholar 

  • Winter, B. & M. Wieling, 2016. How to analyze linguistic change using mixed models, Growth Curve Analysis and Generalized Additive Modeling. Journal of Language Evolution 1: 7-18.

    Google Scholar 

  • Wood, S. N., 2006. Generalized Additive Models: An Introduction with R. Chapman and Hall, London.

    Google Scholar 

  • Wood, S. N., 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society (B) 73: 3-36.

    Google Scholar 

  • Wood, S. & N. Augustin, 2002. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecological Modelling 157: 157-177.

    Google Scholar 

  • Woodland, R., P. Magnan, H. Glémet, M. Rodriguez & G. Cabana, 2012. Variability and directionality of temporal changes in d13C and d15N of aquatic invertebrate primary consumers. Oecologia 169: 199-209.

    PubMed  Google Scholar 

  • Xu, J., Q. Yang, M. Zhang, M. Zhang, P. Xie & L.-H. Hansson, 2011. Preservation effects on stable isotope ratios and consequences for the reconstruction of energetic pathways. Aquatic Ecology 45:483-492.

    CAS  Google Scholar 

  • Yue, F.-J., S.-L. Li, C.-Q. Liu, Y.-C. Lang & H. Ding, 2015. Sources and transport of nitrate constrained by the isotopic technique in a karst catchment: an example from Southwest China. Hydrological Processes 29: 1883-1893.

    CAS  Google Scholar 

  • Yue F.-J., S.-L. Li, J. Zhong, J. Liu, 2018. Evaluation of factors driving seasonal nitrate variations in surface and underground systems of a karst catchment. Vadose Zone Journal. https://doi.org/10.2136/vzj2017.04.0071.

    Article  Google Scholar 

  • Yue F.-J., S. Waldron, S.-L. Li, Z.-J. Wang, J. Zeng, S. Xu, Z.-C. Zhang & D. M. Oliver, 2019. Land use interacts with changes in catchment hydrology to generate chronic nitrate pollution in karst waters and strong seasonality in excess nitrate export. Science of the Total Environment 696 : 134062.

    CAS  Google Scholar 

  • Züur, A., E. Ieno, N. Walker, A. Saveliev & G. Smith, 2010. Mixed effects models and extensions in ecology with R. In Statistics for Biology and Health. Springer, New York: 549 pp.

Download references

Acknowledgements

The authors thank the different anonymous reviewers as well as the associate editor for their helpful comments that contributed to improve the early versions of the manuscript. We are also indebted to the Collectif SOS Loue Rivières Comtoises as well as the Humus Foundation for their financial support. Data for the annual survey were collected through the QUARSTIC network project funded by the Rhone-Mediterranean and Corsica Water Agency, the Doubs department, and the French Geological Survey (BRGM). We also thank Etienne Chanez for constructive discussions about nitrate dynamics, Renaud Scheffer for providing material for stocking isotope samples, and Valérie Verneaux for allowing us to use instruments for conditioning the biological samples for stable isotope analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Frossard.

Additional information

Handling editor: David Philip Hamilton

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frossard, V., Aleya, L., Vallet, A. et al. Impacts of nitrogen loads on the water and biota in a karst river (Loue River, France). Hydrobiologia 847, 2433–2448 (2020). https://doi.org/10.1007/s10750-020-04264-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04264-4

Keywords

Navigation