Skip to main content

Advertisement

Log in

Modeling growth on the cannonball jellyfish Stomolophus meleagris based on a multi-model inference approach

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Worldwide catches of cannonball jellyfish Stomolophus meleagris (Cnidaria: Scyphozoa) have increased during the last years; nevertheless, this species still lacks updated biological knowledge for its management. This research proposes that the individual growth pattern for jellyfish can be estimated in the absence of age readings through cohort follow-up over time and by multi-model inference approach (MMI). Length data were obtained during 2010–2011 in Gulf of California to obtain cohort information using a multinomial analysis and then assign age; growth model selection was based on MMI. Three cohorts were identified and the von Bertalanffy model suitably described their growth. The species has an accelerated growth with a short life cycle; cohorts one and two reached their asymptotic length, and the third one barely reached the length-at-first sexual maturity. Growth variations among cohorts could be explained by their different biological strategies where the first two prioritized asymptotic length and the third one reproduction length. The three cohorts shared a common goal for medusoid phase, which was sexual reproduction. This information could be used for estimating harvest rates or assessing their capacity for redoubling as an invasive population in coastal ecosystems. The proposed methodology may be applied in other jellyfish species around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Image 1

Similar content being viewed by others

References

  • Akaike, H., 1983. Information measures and model selection. Bulletin of the International Statistical Institute 50: 277–291.

    Google Scholar 

  • Álvarez-Tello, F. J., J. López-Martínez & D. B. Lluch-Cota, 2016. Trophic spectrum and feeding pattern of cannonball jellyfish Stomolophus meleagris (Agassiz, 1862) from central Gulf of California. Journal of the Marine Biological Association of the United Kingdom 96: 1217–1227.

    Article  Google Scholar 

  • Bautista-Romero, J. J., S. S. González-Peláez, E. Morales-Bojórquez, J. A. Hidalgo-de-la-Toba & D. B. Lluch-Cota, 2015. Sinusoidal function modeling applied to age validation of geoducks Panopea generosa and Panopea globosa. Journal of Shellfish Research 34: 21–29.

    Article  Google Scholar 

  • Beddington, J. R. & G. P. Kirkwood, 2005. The estimation of potential yield and stock status using life–history parameters. Philosophical Transactions of the Royal Society B: Biological Sciences 360: 163–170.

    Article  CAS  Google Scholar 

  • Beninger, P. G., I. Boldina & S. Katsanevakis, 2012. Strengthening statistical usage in marine ecology. Journal of Experimental Marine Biology and Ecology 426: 97–108.

    Article  Google Scholar 

  • Berline, L., B. Zakardjian, A. Molcard, Y. Ourmières & K. Guihou, 2013. Modeling jellyfish Pelagia noctiluca transport and stranding in the Ligurian Sea. Marine Pollution Bulletin 70: 90–99.

    Article  CAS  PubMed  Google Scholar 

  • Blackhart, K., D. G. Stanton, & A. M. Shimada, 2006. NOAA fisheries glossary. In: NOAA Technical Memorandum NMFS-F/SPO-69. 61 pp.

  • Bolton, T. F. & W. N. Graham, 2004. Morphological variation among populations of an invasive jellyfish. Marine Ecology Progress Series 278: 125–139.

    Article  Google Scholar 

  • Boßelmann, F., M. Epple, I. Sötje & H. Tiemann, 2007. Statoliths of calcium sulfate hemihydrate are used for gravity sensing in rhopaliophoran medusae (Cnidaria). In Bäuerlein, E. (ed.), Handbook of biomineralization: biological aspects and structure formation. Wiley-VCH Verlag, Weinheim p: 262–272.

    Google Scholar 

  • Brierley, A. S., B. E. Axelsen, E. Buecher, C. A. Sparks, H. Boyer & M. J. Gibbons, 2001. Acoustic observations of jellyfish in the Namibian Benguela. Marine Ecology Progress Series 210: 55–66.

    Article  Google Scholar 

  • Brotz, L. & D. Pauly, 2012. Jellyfish populations in the Mediterranean Sea. Acta Adriatica 53: 213–230.

    Google Scholar 

  • Brotz, L., W. W. L. Cheung, K. Kleisner, E. Pakhomov & D. Pauly, 2012. Increasing jellyfish populations: trends in large marine ecosystems. Hydrobiologia 690: 3–20.

    Article  Google Scholar 

  • Brotz, L., A. Schiariti, J. López-Martínez, J. Álvarez-Tello, J. Hsieh, Y. H. P. Jones, R. P. Jones, J. Quiñones, Z. Dong, A. C. Morandini, M. Preciado, E. Laaz & H. Mianzan, 2016. Jellyfish fisheries in the Americas: origin, state of the art, and perspectives on new fishing grounds. Reviews in Fish Biology and Fisheries 1-29.

  • Buecher, E., C. Sparks, A. Brierley, H. Boyer & M. Gibbons, 2001. Biometry and size distribution of Chrysaora hysoscella (Cnidaria, Scyphozoa) and Aequorea aequorea (Cnidaria, Hydrozoa) off Namibia with some notes on their parasite Hyperia medusarum. Journal of Plankton Research 23: 1073–1080.

    Article  Google Scholar 

  • Burke, W. D., 1976. Biology and distribution of the macrocoelenterates of Mississippi Sound and adjacent waters. Gulf and Caribbean Research 5: 17–28.

    Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2002. Model selection and multi-model inference: A practical information-theoretic approach. Springer. 2nd Ed. New York, N.Y. 488p.

  • Cailliet, G. M., W. D. Smith, H. F. Mollet & K. J. Goldman, 2006. Age and growth studies of chondrichthyan fishes: the need for consistency in the terminology, verification, validation, and growth function fitting. Environmental Biology of Fishes 77: 211–228.

    Article  Google Scholar 

  • Calder, D. R. & B. S. Hester. 1978. Phylum Cnidaria. An annotated checklist of the biota of the coastal zone of South Carolina. University of South Carolina Press, Columbia 87-93.

  • Calder, R., 1983. Nematocysts of stages in the life cycle of Stomolophus meleagris, with keys to scyphistomae and ephyrae of some western Atlantic Scyphozoa. Canadian Journal of Zoology 61: 1185–1192.

    Article  Google Scholar 

  • Campana, S. E., 2001. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology 59: 197–242.

    Article  Google Scholar 

  • Campana, S. E., M. C. Annand & J. I. McMillan, 1995. Graphical and statistical methods for determining the consistency of age determinations. Transactions of the American Fisheries Society 124: 131–138.

    Article  Google Scholar 

  • Carvalho-Saucedo, L., F. García-Domínguez, C. Rodríguez-Jaramillo & J. López-Martínez, 2010. Variación lipídica en los ovocitos de la medusa Stomolophus meleagris (Scyphozoa: Rhizostomeae) Durante el desarrollo gonádico, en la laguna Las Guásimas, Sonora, México. Revista de Biología Tropical 58: 119–130.

    PubMed  Google Scholar 

  • Carvalho-Saucedo, L., J. López-Martínez & F. García-Domínguez, 2011. Biología reproductiva de la medusa bola de canon Stomolophus meleagris (Agassiz 1862) en la laguna Las Guásimas. Sonora, México, Hidrobiológica 21: 77–88.

    Google Scholar 

  • Ceh, J., J. Gonzalez, A. S. Pacheco & J. M. Riascos, 2015. The elusive life cycle of scyphozoan jellyfish–metagenesis revisited. Scientific reports 5: 12037.

    Article  PubMed  PubMed Central  Google Scholar 

  • Condon, R. H., C. M. Duarte, K. A. Pitt, K. L. Robinson, C. H. Lucas, K. R. Sutherland, H. W. Mianzan, M. Bogeberg, J. E. Purcell, M. Beth Decker, Uye Shin-ichi, L. P. Madin, R. D. Brodeur, S. H. D. Haddock, A. Malej, G. D. Parry, E. Eriksen, J. Quiñones, M. Acha, M. Harvey, J. M. Arthur & W. M. Graham, 2013. Recurrent jellyfish blooms are a consequence of global oscillations. Proceedings of the National Academy of Sciences 110: 1000–1005.

    Article  CAS  Google Scholar 

  • Cunha, A. F., M. M. Maronna & A. C. Marques, 2016. Variability on microevolutionary and macroevolutionary scales: a review on patterns of morphological variation in Cnidaria Medusozoa. Organisms Diversity & Evolution 16: 431–442.

    Article  Google Scholar 

  • Daglio, L. G. & M. N. Dawson, 2017. Species richness of jellyfishes (Scyphozoa: Discomedusae) in the Tropical Eastern Pacific: missed taxa, molecules, and morphology match in a biodiversity hotspot. Invertebrate Systematics 31: 635–663.

    Article  Google Scholar 

  • Dawson, M. N., 2005. Morphological variation and systematics in the Scyphozoa: Mastigias (Rhizostomeae, Mastigiidae)–a golden unstandard? Hydrobiologia 537: 185–206.

    Article  Google Scholar 

  • Decker, M. B., H. Liu, L. Ciannelli, C. Ladd, W. Cheng & K. S. Chan, 2013. Linking changes in eastern Bering Sea jellyfish populations to environmental factors via nonlinear time series models. Marine Ecology Progress Series 494: 179–189.

    Article  Google Scholar 

  • Escalante, F., J. E. Valdez-Holguín, S. Álvarez-Borrego & J. R. Lara-Lara, 2013. Temporal and spatial variation of sea surface temperature, chlorophyll a, and primary productivity in the Gulf of California. Ciencias Marinas 39: 203–215.

    Article  CAS  Google Scholar 

  • Flatt, T., 2005. The evolutionary genetics of canalization. The Quarterly review of biology 80: 287–316.

    Article  PubMed  Google Scholar 

  • Fournier, D. A., J. R. Sibert, J. Majkowsky & J. Hampton, 1990. MULTIFAN a likelihood-based method for estimating growth parameters and age composition from multiple length frequency data sets illustrated using data for southern bluefin tuna (Thunnus maccoyii). Canadian Journal of Fishery and Aquatic Sciences 47: 301–317.

    Article  Google Scholar 

  • Fuentes, V., I. Straehler-Pohl, D. Atienza, I. Franco, U. Tilves, M. Gentile, M. Acevedo, A. Olariaga & J. M. Gili, 2011. Life cycle of the jellyfish Rhizostoma pulmo (Scyphozoa: Rhizostomeae) and its distribution, seasonality and inter-annual variability along the Catalan coast and the Mar Menor (Spain, NW Mediterranean). Marine Biology 158: 2247–2266.

    Article  Google Scholar 

  • Gallucci, V. F., B. Amjoun, J. B. Hedgepeth, & H. L. Lai, 1996. Size-based methods of stock assessment of small-scale fisheries. Stock assessment. Quantitative methods and applications for small-scale fisheries 9-81.

  • Gambill, M. & M. A. Peck, 2014. Respiration rates of the polyps of four jellyfish species: Potential thermal triggers and limits. Journal of Experimental Marine Biology and Ecology 459: 17–22.

    Article  Google Scholar 

  • Gambill, M., L. Friis Møller & M. A. Peck, 2015. Effects of temperature on the feeding and growth of the larvae of the invasive ctenophore Mnemiopsis leidyi. Journal of Plankton Research 37: 1001–1005.

    Article  CAS  Google Scholar 

  • García, J. R. & E. Durbin, 1993. Zooplanktivorous predation by large scyphomedusae Phyllorhiza punctata (Cnidaria: Scyphozoa) in Laguna Joyuda. Journal of Experimental Marine Biology and Ecology 173: 71–93.

    Article  Google Scholar 

  • García, J. R., 1990. Population dynamics and production of Phyllorhiza punctata (Cnidaria: Scyphozoa) in Laguna Joyuda, Puerto Rico. Marine Ecology Progress Series 64: 243–251.

    Article  Google Scholar 

  • García-Morales, R., J. López-Martínez, J. E. Valdez-Holguín, H. Herrera-Cervantes & L. D. Espinosa-Chaurand, 2017. Environmental Variability and Oceanographic Dynamics of the Central and Southern Coastal Zone of Sonora in the Gulf of California. Remote Sensing 9(925): 1–27.

    Google Scholar 

  • Getino-Mamet, L. N., L. G. Daglio & F. J. García-De-León, 2019. High genetic differentiation in the edible cannonball jellyfish (cnidaria: Scyphozoa: Stomolophus spp.) from the Gulf of California, Mexico. Fisheries Research 219: 105328.

    Article  Google Scholar 

  • Girón-Nava, A., C. López-Sagastegui & O. Aburto-Oropeza, 2015. On the conditions of the 2012 cannonball jellyfish (Stomolophus meleagris) bloom in Golfo de Santa Clara: a fishery opportunity? Fisheries Management and Ecology 22: 261–264.

    Article  Google Scholar 

  • Goldstein, J. & H. U. Riisgård, 2016. Population dynamics and factors controlling somatic degrowth of the common jellyfish, Aurelia aurita, in a temperate semi-enclosed cove (Kertinge Nor, Denmark). Marine Biology 163: 33.

    Article  Google Scholar 

  • Gómez-Aguirre, S., 1991. Contribución al estudio faunístico de Celenterados y Ctenóforos del plancton estuarino del noroeste de México. Anales Del Instituto de Biología Serie Zoología 62: 1–10.

    Google Scholar 

  • Gompertz, B., 1825. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. FRS & c. Philosophical transactions of the Royal Society of London 115: 513–583.

    Article  Google Scholar 

  • Gordon, M., C. Hatcher & J. Seymour, 2004. Growth and age determination of the tropical Australian cubozoan Chiropsalmus sp. Hydrobiologia 530–531: 339–345.

    Google Scholar 

  • Haddon, M., 2001. Modelling and quantitative methods in fisheries. Chapman and Hall/CRC, Boca Raton: 406.

    Google Scholar 

  • Heins, A., I. Sötje & S. Holst, 2018. Assessment of investigation techniques for scyphozoan statoliths, with focus on early development of the jellyfish Sanderia malayensi. Marine Ecology Progress Series 591: 37–56.

    Article  CAS  Google Scholar 

  • Helidoniotis, F. & M. Haddon, 2013. Growth models for fisheries: the effect of unbalanced sampling error on model selection, parameter estimation, and biological predictions. Journal of Shellfish Research 32: 223–235.

    Article  Google Scholar 

  • Hidalgo-de-la-Toba, J. A., E. Morales-Bojórquez, S. S. González- Peláez, J. J. Bautista-Romero & D. B. Lluch-Cota, 2018. Modeling the temporal periodicity of growth increments based on harmonic functions. PLoS One 13: e0196189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hilborn, R. & M. Mangel, 1997. The ecological detective. Confronting models with data. Princeton University Press, Princeton, NJ. 330 p.

  • Hobbs, N. T. & R. Hilborn, 2006. Alternatives to statistical hypothesis testing in ecology: a guide to self-teaching. Ecological Applications 16: 5–19.

    Article  PubMed  Google Scholar 

  • Holst, S., P. Michalik, M. Noske, J. Krieger & I. Söthe, 2016. Potential of X-ray micro-computed tomography for soft-bodied and gelatinous cnidarians with special emphasis on scyphozoan and cubozoan statoliths. Journal of Plankton Research 38: 1225–1242.

    Article  CAS  Google Scholar 

  • Hopf, J. K. & M. J. Kingsford, 2013. The utility of statoliths and bell size to elucidate age and condition of a scyphomedusa (Cassiopea sp.). Marine Biology 160: 951–960.

    Article  Google Scholar 

  • https://www.gob.mx/cms/uploads/attachment/file/301858/FSIA_INECC_book_pages_V2.pdf

  • Ishii, H. & U. Båmstedt, 1998. Food regulation of growth and maturation in a natural population of Aurelia aurita (L.). Journal of Plankton Research 20: 805–816.

    Article  Google Scholar 

  • Jarms, G. & A. C. Morandini, 2019. WoRMS Scyphozoa: World list of Scyphozoa (version 2019-03-05). In: Species 2000 & ITIS Catalogue of Life, 2019 Annual Checklist (Roskov Y., Ower G., Orrell T., Nicolson D., Bailly N., Kirk P.M., Bourgoin T., DeWalt R.E., Decock W., Nieukerken E. van, Zarucchi J., Penev L., eds.). Digital resource at https://www.catalogueoflife.org/annual-checklist/2019. Species 2000: Naturalis, Leiden, the Netherlands. ISSN 2405-884X.

  • Katsanevakis, S., 2006. Modelling fish growth: model selection, multi-model inference and model selection uncertainty. Fisheries Research 81: 229–235.

    Article  Google Scholar 

  • Katsanevakis, S. & D. Maravelias, 2008. Modelling fish growth: multi-model inference as a better alternative to a priori using von Bertalanffy equation. Fish and Fisheries 9: 178–187.

    Article  Google Scholar 

  • Kawamura, M., S. Ueno, S. Iwanage, N. Oshiro & S. Kubota, 2003. The relationship between fine rings in the statolith and growth of the cubomedusa Chiropsalmus quadrigatus (Cnidaria: Cubozoa) for Okinaw Island, Japan. Plankton Biology & Ecology 50: 37–42.

    Google Scholar 

  • Kimura, D. K., 1980. Likelihood methods for the von Bertalanffy growth curve. Fisheries Bulletin 77: 765–776.

    Google Scholar 

  • Kingsford, M. J., K. A. Pitt & B. M. Guillender, 2000. Management of jellyfish fisheries, with special reference to the order Rhizostomeae. Oceanography and marine Biology: an Annual Review 38: 85–156.

    Google Scholar 

  • Klein, S. G., K. A. Pitt & A. R. Carroll, 2017. Pre-exposure to simultaneous, but not individual, climate change stressors limits acclimation capacity of Irukandji jellyfish polyps to predicted climate scenarios. Coral Reefs 36: 987–1000.

    Article  Google Scholar 

  • Kraeuter, J. N. & E. M. Setzler, 1975. The seasonal cycle of Scyphozoa and Cubozoa in Georgia estuaries. Bulletin of Marine Science 25: 66–74.

    Google Scholar 

  • Kramp, P. L., 1961. Synopsis of the medusae of the world. Journal of the marine biological Association of the United Kingdom 40: 1–469.

    Google Scholar 

  • Lai, H. L., D. R. Gunderson & L. L. Low, 1987. Age determination of Pacific cod, Gadus macrocephalus, using five ageing methods. Fishery Bulletin 85: 713–725.

    Google Scholar 

  • Larson, R. J., 1976. Marine flora and fauna of the northeastern United States. Cnidaria: Scyphozoa. NOAA Technical Report NMFS 397: 17 pp.

  • Lluch-Cota, S. E., E. A. Aragón-Noriega, F. Arreguín-Sánchez, D. Aurioles-Gamboa, J. J. Bautista-Romero, R. C. Brusca, R. Cervantes-Duarte, R. Cortes-Altamirano, P. Del-MonteLuna, A. Esquivel-Herrera, G. Fernández, M. E. Hendrickx, S. Hernández-Vázquez, H. Herrera-Cervantes, M. Kahru, M. Lavin, D. Lluch-Belda, D. B. Lluch-Cota, J. López-Martínez, S. G. Marinone, M. O. Nevárez-Martínez, S. Ortega-García, E. Palacios-Castro, A. Pares-Sierra, G. Ponce-Díaz, M. Ramírez-Rodríguez, C. A. Salinas-Zavala, R. A. Schwartzlose & A. P. Sierra-Beltrán, 2007. The Gulf of California: review of ecosystem status and sustainability challenges. Progresses in Oceanography 73: 1–26.

    Article  Google Scholar 

  • López-Martínez, J. & J. Álvarez-Tello, 2008. Medusa bola de cañón: recurso de exportación. Revista Ciencia y Desarrollo 34: 8–15.

    Google Scholar 

  • López-Martínez, J. & F. J. Álvarez-Tello, 2013. Jellyfish fishery in Mexico. The Journal of Agricultural Science 4: 57–61.

    Google Scholar 

  • López-Martínez, J., E. Herrera-Valdivia, J. Álvarez-Tello, E. Arzola-Sotelo, M. Nevárez-Martínez, R. García-Morales, R. Morales-Azpeitia, E. Valdez-Holguín, J. Padilla-Serrato, J. Rodríguez-Romero, F. Enríquez-Ocaña & C. Rodríguez-Jaramillo, 2017a. Estado de la población de la medusa bala de cañón Stomolophus meleagris. Variabilidad interanual en la dinámica poblacional, abundancias y distribución. Informe del Proyecto SEMARNAT-2014-1-249458. 119 pp.

  • López-Martínez, J., J. Álvarez-Tello, E. A. Arzola-Sotelo, E. Herrera-Valdivia, R. Morales-Azpeitia, H. Herrera-Cervantes, M. O. Nevárez-Martínez, J. G. Padilla-Serrato, R. García-Morales & J. E. Valdez Holguín, 2017b. El cambio climático y la población de medusa Stomolophus meleagris en el Golfo de California. 105-111 pp In: Instituto Nacional de Ecología y Cambio Climático (ed). Memorias del Primer Encuentro Científico y Técnico Fondo Sectorial de Investigación Ambiental SEMARNAT-CONACYT. México. Serie Avances de Investigación. 01/06/2017.

  • López-Martínez, J., J. Álvarez-Tello, M. Navarro-Fernández, M. A. Cisneros-Mata, M. Ross-Guerrero, C. Soto-Murillo & E. A. Arzola-Sotelo, 2018. La medusa en México: importancia socioeconómica y su futuro en la acuicultura. Panorama Acuícola Magazine 23: 56–61.

    Google Scholar 

  • Lorenzen, K., 2016. Toward a new paradigm for growth modeling in fisheries stockassessments: embracing plasticity and its consequences. Fisheries Research 180: 4–22.

    Article  Google Scholar 

  • Luquin-Covarrubias, M. A., E. Morales-Bojórquez, S. González-Peláez & D. Lluch-Cota, 2016. Joint likelihood function based on multinomial and normal distributions for analyzing the phenotypic growth variability of geoduck clam Panopea globosa. California Cooperative Fisheries Investigation Reports 57: 151–162.

    Google Scholar 

  • Manzari, C., B. Fosso, M. Marzano, A. Annese, R. Caprioli, A. M. D’Erchia, C. Gissi, M. Intranuovo, E. Picardi, M. Santamaria, S. Scorrano, G. Sgaramella, L. Stabili, S. Piraino & G. Pesoleano, 2015. The influence of invasive jellyfish blooms on the aquatic microbiome in a coastal lagoon (Varano, SE Italy) detected by an Illumina-based deep sequencing strategy. Biological invasions 17: 923–940.

    Article  Google Scholar 

  • Mayer, A. G., 1910. Medusae of the world II: the hydromedusae. The Carnegie Institute, Washington, D. C., USA: 382.

    Book  Google Scholar 

  • Mellin, C., M. Lurgi, S. Matthews, M. A. MacNeil, M. J. Caley, N. Bax, R. Przeslawskih & D. A. Fordham, 2016. Forecasting marine invasions under climate change: biotic interactions and demographic processes matter. Biological Conservation 204: 459–467.

    Article  Google Scholar 

  • Miyake, H., K. Iwao & Y. Kakinuma, 1997. Life history and environment of Aurelia aurita. South Pacific Study 17: 273–285.

    Google Scholar 

  • Möller, H., 1980. Population dynamics of Aurelia aurita medusae in Kiel Bight, Germany (FRG). Marine Biology 60: 123–128.

    Article  Google Scholar 

  • Montgomery, S. S., C. T. Walsh, M. Haddon, C. L. Kesby & D. D. Johnson, 2010. Using length data in the Schnute Model to describe growth in a metapenaeid from waters off Australia. Marine and Freshwater Research 61: 1435–1445.

    Article  CAS  Google Scholar 

  • Mooney, C. J. & M. J. Kingsford, 2016. The influence of salinity on box jellyfish (Chironex eckeri, Cubozoa) statolith elemental chemistry. Marine Biology 163: 103.

    Article  CAS  Google Scholar 

  • Neter, J., M. H. Kutner, C. J. Nachtsheim & W. Wasserman, 1996. Applied linear statistical models. McGraw-Hill, New York: 1408p.

    Google Scholar 

  • Ocaña-Luna, A. & S. Gómez-Aguirre, 1999. Stomolophus meleagris (Scyphozoa: Rhizostomeae) en dos lagunas costeras de Oxaca, México. Anales del Instituto de Biología. Serie Zoología 70: 71–77.

    Google Scholar 

  • Okamura, H., A. E. Punt, Y. Semba & M. Ichinokawa, 2013. Marginal increment analysis: a new statistical approach of testing for temporal periodicity in fish age verification. Journal of Fish Biology 82: 1239–1249.

    Article  CAS  PubMed  Google Scholar 

  • Omori, M. & E. Nakano, 2001. Jellyfish fisheries in southeast Asia. Jellyfish Blooms: Ecological and Societal Importance. Springer, Netherlands: 19–26.

    Chapter  Google Scholar 

  • Omori, M., 1978. Zooplankton fisheries of the world: a review. Marine Biology 48: 199–205.

    Article  Google Scholar 

  • Orsi-Relini, L., A. Mannini & G. Relini, 2013. Updating knowledge on growth, population dynamics, and ecology of the blue and red shrimp, Aristeus antennatus (Risso, 1816), on the basis of the study of its instars. Marine Ecology 34: 90–102.

    Article  Google Scholar 

  • Páez-Osuna, F., J. A. Sanchez-Cabeza, A. C. Ruiz-Fernández, R. Alonso-Rodríguez, A. Piñón-Gimate, J. G. Cardoso-Mohedano, F. J. Flores-Verdugo, J. L. Carballo, M. A. Cisneros-Mata & S. Álvarez-Borrego, 2016. Environmental status of the Gulf of California: a review of responses to climate change and climate variability. Earth-Science Reviews 162: 253–268.

    Article  Google Scholar 

  • Page, J. W., 2015. Characterization of Bycatch in the Cannonball Jellyfish Fishery in the Coastal Waters off Georgia. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 7: 190–199.

    Article  Google Scholar 

  • Palomares, M. L. D. & D. Pauly, 2009. The growth of jellyfishes. Hydrobiologia 616: 11–21.

    Article  Google Scholar 

  • Pawitan, Y., 2001. In All Likelihood: statistical modeling and inference using likelihood. Oxford University Press, Oxford: 528p.

    Google Scholar 

  • Pigliucci, M. & C. J. Murren, 2003. Perspective: genetic assimilation and a possible evolutionary paradox: can macroevolution sometimes be so fast as to pass us by? Evolution 57: 1455–1464.

    Article  PubMed  Google Scholar 

  • Pitt, A. K. & M. J. Kingsford, 2000. Geographic separation of stocks of the edible jellyfish Catostylus mosaicus (Rhizostomeae) in the New South Wales, Australia. Marine Ecology Progress Series 196: 143–155.

    Article  Google Scholar 

  • Pitt, A. K. & M. J. Kingsford, 2003. Temporal and special variation in recruitment and growth of medusa of jellyfish, Catostylus mosaicus (Scyphozoa: Rhizostomeae). Marine and Freshwater Research 54: 117–125.

    Article  Google Scholar 

  • Punt, A. E., M. Haddon & R. McGarvey, 2016. Estimating growth within size-structured fishery stock assessments: what is the state of the art and what does the future look like? Fisheries Research 180: 147–160.

    Article  Google Scholar 

  • Quinn, J. T. & R. B. Deriso, 1999. Quantitative fish dynamics. Oxford University Press, New York: 452p.

    Google Scholar 

  • Quiñones, J., H. Mianzan, S. Purca, K. L. Robinson, G. D. Adams & E. M. Acha, 2015. Climate-driven population size fluctuations of jellyfish (Chrysaora plocamia) off Peru. Marine biology 162: 2339–2350.

    Article  Google Scholar 

  • Richardson, A. J., A. Bakun, G. C. Hays & M. J. Gibbons, 2009. The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends in ecology & evolution 24: 312–322.

    Article  Google Scholar 

  • Ricker, W. E., 1975. Computation and interpretation of biological statistics of fish populations. Journal of the Fisheries Research Board of Canada 191: 383 pp.

  • Rivera-Martínez, C. M., 2017. Interacción biológica entre Stomolophus meleagris y las tortugas marinas que habitan en el Golfo de California. Universidad de Sonora, Tesis de licenciatura: 79.

    Google Scholar 

  • Robles-Tamayo, C., J. Valdez-Holguín, R. García-Morales, G. Figueroa-Preciado, H. Herrera-Cervantes, J. López-Martínez & F. Enríquez-Ocaña, 2018. Sea Surface Temperature (SST) Variability of the Eastern Coastal Zone of the Gulf of California. Remote Sensing 10: 1434.

    Article  Google Scholar 

  • Rocha-García, J., M. R. Wolf, R. Caetano da Costa & A. Leão Castilho, 2016. Growth and reproduction of the shrimp Rimapenaeus constrictus (Decapoda: Penaeidae) from the southeastern coast of Brazil. Regional studios in marine science 6: 1–6.

    Article  Google Scholar 

  • Rodríguez-Domínguez, G., S. O. G. Castillo-Vargasmachuca, R. Pérez-González & E. A. Aragón-Noriega, 2012. Estimation of the individual growth parameters of the brown crab Callinectes bellicosus (Brachyura, Portunidae) using a Multi-Model approach. Crustaceana 85: 55–69.

    Article  Google Scholar 

  • Rodríguez-Sáenz, K., J. A.Vargas-Zamora & L. Segura-Puertas, 2012. Medusae (Cnidaria: Hydrozoa) from a coastal upwelling zone, Culebra Bay, Pacific, Costa Rica. Revista de biologia tropical 60: 1731–1748.[L1]   [L1]Se agregó literatura faltante

  • Rosenberg, A. A. & V. R. Restrepo, 1994. Uncertainty and risk evaluation in stock assessment advice for U.S. marine fisheries. Canadian Journal of Fisheries and Aquatic Sciences 51: 2715–2720.

    Article  Google Scholar 

  • Schnute, J. & D. Fournier, 1980. A new approach to length-frequency analysis: growth structure. Canadian Journal of Fisheries and Aquatic Sciences 37: 1337–1351.

    Article  Google Scholar 

  • Schnute, J., 1981. A versatile growth model with statistically stable parameters. Canadian Journal of Fisheries and Aquatic Sciences 38: 1128–1140.

    Article  Google Scholar 

  • Segura-Puertas, L., E. Suárez-Morales & L. Celis, 2003. A cheklist of the Medusae (Hydrozoa, Scyphozoa and Cubozoa) of Mexico. Zootaxa 194: 1–15.

    Article  Google Scholar 

  • Shinozaki-Mendes, R. A., A. A. G. Silva, P. P. Mendes & L. Rosângela, 2012. Age and growth of Callinectes danae (Brachyura: Portunidae) in a tropical region. Journal of Crustacean Biology 32: 906–915.

    Article  Google Scholar 

  • Sötje, I., T. Dishon, F. Hoffman & S. Holst, 2017. New methods of morphometric analyses on scyphozoan jellyfish statoliths including the first direct evidence for statolith growth using calcein as a fluorescent marker. Microscopy and Microanalysis 23: 553–558.

    Article  PubMed  CAS  Google Scholar 

  • Sparre, P. & S. C. Venema, 1997. Introducción a la evaluación de recursos pesqueros Tropicales. Parte 1. Manual. FAO Documento Técnico de Pesca. Valparaiso, Chile. 306 (1), 420 pp.

  • Taylor, C. C., 1960. Temperature, growth, and mortality–the pacific cockle. ICES Journal of Marine Science 26: 117–124.

    Article  Google Scholar 

  • Tills, O., X. Sun, S. D. Rundle, T. Heimbach, T. Gibson, A. Cartwright, M. Palmer, T. Rudin-Bitterli & J. I. Spicer, 2016. Reduced pH affects pulsing behaviour and body size in ephyrae of the moon jellyfish, Aurelia aurita. Journal of Experimental Marine Biology and Ecology 480: 54–61.

    Article  CAS  Google Scholar 

  • Ueno, S., C. Imai & A. Mitsutani, 1995. Fine growth rings found in statolith of a cubomedusa Carybdea rastoni. Journal Plankton Research 17: 1381–1384.

    Article  Google Scholar 

  • Venzon, D. J. & S. H. Moolgavkor, 1988. A method for computing profile-likelihood based confidence intervals. Applied Statistics 37: 87–94.

    Article  Google Scholar 

  • von Bertalanffy, L., 1938. A quantitative theory of organic growth (Inquiries on growth laws. II). Human Biology 10: 181–213.

    Google Scholar 

  • von Bertalanffy, L., 1957. Quantitative laws in metabolism and growth. The quarterly review of biology 32: 217–231.

    Article  Google Scholar 

  • Wang, N. & C. Li, 2015. The effect of temperature and food supply on the growth and ontogeny of Aurelia sp. 1 ephyrae. Hydrobiologia 754: 157–167.

    Article  CAS  Google Scholar 

  • West, J. M., C. D. Harvell & A. M. Walls, 1993. Morphological plasticity in a gorgonian coral (Briareum asbestinum) over a depth cline. Marine Ecology-Progress Series 94: 61–61.

    Article  Google Scholar 

  • Zar, J. H., 1999. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, NJ: 633p.

    Google Scholar 

Download references

Acknowledgements

This research has been funded by CIB-CONACYT-2015-256477 and SEMARNAT-2014-01-249458 Project. The authors thank CIBNOR Fisheries laboratory staff, Eloisa Herrera Valdivia and Rufino Morales Azpeitia for technical work; and Diana Fischer for editorial services in English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Otilio Nevárez-Martínez.

Additional information

Handling editor: Juan Carlos Molinero

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Martínez, J., Arzola-Sotelo, E.A., Nevárez-Martínez, M.O. et al. Modeling growth on the cannonball jellyfish Stomolophus meleagris based on a multi-model inference approach. Hydrobiologia 847, 1399–1422 (2020). https://doi.org/10.1007/s10750-020-04182-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04182-5

Keywords

Navigation