Skip to main content

Advertisement

Log in

The utility of statoliths and bell size to elucidate age and condition of a scyphomedusa (Cassiopea sp.)

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Scyphomedusae play important roles in marine ecosystems and are of economic significance. However, no reliable techniques for estimating scyphomedusa age have been documented. This study focused on the utility of Cassiopea sp. (Cnidaria: Scyphozoa) statoliths, statocysts, and body size as proxies for age of medusae. Reared medusae of known age and a manipulative experiment were used to assess the accuracy and reliability of four measures of age: number of statoliths, size (diameter) of statoliths, area of statocyst (housing statoliths), and bell diameter. Bell diameter provided the most accurate measure of age under constant conditions, but was increasingly inaccurate under varying environmental conditions. In contrast, the average number of statoliths per medusa reflected age with relatively low accuracy, but did not vary with changes in food availability and salinity. Only temperature influenced the average number of statoliths. Comparisons of bell diameter to the number of statoliths in medusae under low food availability to those fed well showed that the ratio of medusa size to the number of statoliths can be used to recognise medusae that are relatively poorly conditioned. Statoliths, therefore, provide a tool for studying both population ecology and the influence of environmental variation on medusa growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alamaru A, Bronstein O, Dishon G, Loya Y (2009) Opportunistic feeding by the fungiid coral Fungia scruposa on the moon jellyfish Aurelia aurita. Coral Reefs 28:865–870. doi:10.1007/s00338-009-0507-7

    Article  Google Scholar 

  • Arai MN (1997) A functional biology of scyphozoa. Champman & Hall, London

    Google Scholar 

  • Arai MN (2005) Predation on pelagic coelenterates: a review. J Mar Biol Assoc UK 85:523–536. doi:10.1017/S0025315405011458

    Article  Google Scholar 

  • Becker A, Sotje I, Paulmann C, Beckmann F, Donath T, Boese R, Prymak O, Tiemann H, Epple M (2005) Calcium sulfate hemihydrate is the inorganic mineral in statoliths of Scyphozoan medusae (Cnidaria). Dalton Trans 1545–1550. doi:10.1039/B416246C

  • Boßelmann F, Epple M, Sötje I, Tiemann H (2007) Statoliths of calcium sulphate hemihydrate are used for gravity sensing in Rhopaliophoran medusae (Cnidaria). In: Bäuerlein E (ed) Handbook of biomineralization: Biological aspects and structure formation. Wiley, Weinheim, pp 261–272

    Chapter  Google Scholar 

  • Browne JG, Kingsford MJ (2005) A commensal relationship between the scyphozoan medusae Catostylus mosaicus and the copepod Paramacrochiron maximum. Mar Biol 146:1157–1168. doi:10.1007/s00227-004-1517-1

    Article  Google Scholar 

  • Cerrato RM (2000) What fish biologists should know about bivalve shells. Fish Res 46:39–49

    Article  Google Scholar 

  • Davenport J (1998) Sustaining endothermy on a diet of cold jelly: energetics of the leatherback turtles Dermochelys coriacea. Herptol Bul 62:4–8

    Google Scholar 

  • Fleck J, Fitt WK (1999) Degrading mangrove leaves of Rhizophora mangle Linne provide a natural cue for settlement and metamorphosis of the upside down jellyfish Cassiopea xamachana Bigelow. J Exp Mar Biol Ecol 234:83–94. doi:10.1016/s0022-0981(98)00140-3

    Article  Google Scholar 

  • Gordon M, Seymour J (2012) Growth, development and temporal variation in the onset of six Chironex fleckeri medusae seasons: a contributions to understanding jellyfish ecology. PLoS One 7(2):e31277. doi:10.1371/journal.pone.0031277

    Article  CAS  Google Scholar 

  • Gordon M, Hatcher C, Seymour J (2004) Growth and age determination of the tropical Australian cubozoan Chiropsalmus sp. Hydrobiologia 530–531:339–345. doi:10.1007/s10750-004-2655-7

    Article  Google Scholar 

  • Green BS, Mapstone BD, Carlos G, Begg GA (2009) Introduction to otoliths and fisheries in the tropics. In: Green BS, Mapstone BD, Carlos G, Begg GA (eds) Tropical fish otoliths: information for assessment, management and ecology. Springer, The Netherlands, pp 1–22

    Chapter  Google Scholar 

  • Hamner WM, Jenssen RM (1974) Growth, degrowth, and irreversible cell differentiation in Aurelia aurita. Am Zool 14:833–849

    Google Scholar 

  • Harvey HR, Ju S-J, Son SK, Feinberg LR, Shaw CT, Peterson WT (2010) The biochemical estimation of age in Euphausiids: laboratory calibration and field comparisons. Deep-Sea Res Pt II 57:663–671. doi:10.1016/j.dsr2.2009.10.01

    Article  CAS  Google Scholar 

  • Hatai S (1917) On the composition of the medusa, Cassiopea Xamachana and the changes in it after starvation. Proc Natl Acad Sci USA 3:22–24

    Article  CAS  Google Scholar 

  • Hill KT, Radtke RL (1988) Gerontological studies of the Damselfish, Dascyllus Albisella. Bul Mar Sci 42:424–434

    Google Scholar 

  • Holland B, Dawson M, Crow G, Hofmann D (2004) Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands. Mar Biol 145:1119–1128. doi:10.1007/s00227-004-1409-4

    Article  Google Scholar 

  • Holst S, Sötje I, Tiemann H, Jarms G (2007) Life cycle of the rhizostome jellyfish Rhizostoma octopus (L.) (Scyphozoa, Rhizostomeae), with studies on cnidocysts and statoliths. Mar Biol 151:1695–1710. doi:10.1007/s00227-006-0594-8

    Article  Google Scholar 

  • Ishii H, Båmstedt U (1998) Food regulation of growth and maturation in a natural population of Aurelia aurita (L.). J Plank Res 20:805–816. doi:10.1093/plankt/20.5.805

    Article  Google Scholar 

  • Ishii H, Tadokoro S, Yamanaka H, Omori M (1995) Population dynamics of the jellyfish Aurelia aurita, in Tokyo Bay in 1993 with determination of ATP-related compounds. Bull Plank Soc Jpn 42:171–176

  • Jantzen C, Wild C, Rasheed M, El-Zibdah M, Richter C (2010) Enhanced pore-water nutrient fluxes by the upside-down jellyfish Cassiopea sp. in a Red Sea coral reef. MEPS 411:117–125. doi:10.3354/meps08623

    Article  Google Scholar 

  • Kawamura M, Shunshiro U, Iwanaga S, Oshiro N, Kubota S (2003) The relationship between fine rings in the statolith and growth of the cubomedusa Chiropsalmus quadrigatus (Cnidaria: Cubozoa) from Okinawa Island, Japan. Plank Biol Ecol 50:37–42

    Google Scholar 

  • Kingsford MJ (1993) Biotic and abiotic structure in the pelagic environment: importance to small fishes. B Mar Sci 53:393–415

    Google Scholar 

  • Kingsford MJ (1998) Analytical aspects of sampling design. In: Kingsford MJ, Battershill CN (eds) Studying temperate marine environments. Canterbury University Press, Christchurch

    Google Scholar 

  • Kingsford MJ, Pitt KA, Gillanders BM (2000) Management of jellyfish fisheries, with special reference to the order rhizostomeae. Oceanogr Mar Biol 38:85–15638

    Google Scholar 

  • Kingsford MJ, Smith FJA, Flood MJ (2011) Growth and pelagic larval duration of presettlement and newly settled neon damselfish, Pomacentrus coelestis, at multiple spatial scales. Coral Reefs 30:203–214. doi:10.1007/s00338-010-0692-4

    Article  Google Scholar 

  • Levinton JS (1995) Marine biology: function, biodiversity, ecology. Oxford University Press, New York

    Google Scholar 

  • Lucas CH (1996) Population dynamics of Aurelia aurita (Scyphozoa) from an isolated brackish lake, with particular reference to sexual reproduction. J Plank Res 18:987–1007. doi:10.1093/plankt/18.6.987

    Article  Google Scholar 

  • Lucas CH (2001) Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia 451:229–246. doi:10.1023/a:1011836326717

    Article  Google Scholar 

  • Lynam CP, Heath MR, Hay SJ, Brierley AS (2005) Evidence for impacts by jellyfish on North Sea herring recruitment. MEPS 298:157–167. doi:10.3354/meps298157

    Article  Google Scholar 

  • Lynam CP, Gibbons MJ, Axelsen BE, Sparks CAJ, Coetzee J, Heywood Benjamin G, Brierley AS (2006) Jellyfish overtake fish in a heavily fished ecosystem. Curr Biol 16:1976. doi:10.1016/j.cub.2006.09.012

    Article  CAS  Google Scholar 

  • Miyake H, Iwao K, Kakinuma Y (1997) Life history and environment of Aurelia aurita. South Pac Study 17:273–285

    Google Scholar 

  • Möller H (1984) Reduction of a larval herring population by jellyfish predator. Science 224:621–622. doi:10.1126/science.224.4649.621

    Article  Google Scholar 

  • Molony BW, Sheaves MJ (1998) Otolith increment widths and lipid contents during starvation and recovery feeding in adult Ambassis vachelli (Richardson). J Exp Mar Biol Ecol 221:257–276. doi:10.1016/s0022-0981(97)00131-7

    Article  Google Scholar 

  • Mortillaro JM, Pitt KA, Lee SY, Meziane T (2009) Light intensity influences the production and translocation of fatty acids by zooxanthellae in the jellyfish Cassiopea sp. J Exp Mar Biol Ecol 378:22–30. doi:10.1016/j.jembe.2009.07.003

    Article  CAS  Google Scholar 

  • Niggl W, Naumann MS, Struck U, Manasrah R, Wild C (2010) Organic matter release by the benthic upside-down jellyfish Cassiopea sp. fuels pelagic food webs in coral reefs. J Exp Mar Biol Ecol 384:99–106. doi:10.1016/j.jembe.2010.01.01

    Article  Google Scholar 

  • Panfili J, Tomas J, Morales-Nin B (2009) Otolith microstructure in tropical fish. In: Green A (ed) Tropical fish otoliths: information for assessment, management and ecology. Springer, The Netherlands, pp 212–248

    Chapter  Google Scholar 

  • Péron F, Lesueur C (1809) Tableau des caracteres generiques et specifiques de toutes les especes de Meduses connues jusqu'a ce jour. Annl Mus Hist Nat Paris 14:356

    Google Scholar 

  • Pitt K, Welsh D, Condon R (2009) Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia 616:133–149. doi:10.1007/s10750-008-9584-9

    Article  CAS  Google Scholar 

  • Prymak O, Tiemann H, Sötje I, Marxen JC, Klocke A, Kahl-Nieke B, Beckmann F, Donath T, Epple M (2005) Application of synchrotron-radiation-based computer microtomography (SRICT) to selected biominerals: embryonic snails, statoliths of medusae, and human teeth. J Biol Inorg Chem 10:688–695. doi:10.1007/s00775-005-0023-3

    Article  CAS  Google Scholar 

  • Purcell J, Uye S, Lo W (2007) Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. MEPS 350:153–174. doi:10.3354/meps07093

    Article  Google Scholar 

  • Quinn PQ, Keough MJ (2009) Experimental design and data analysis for biologists. University Press, Cambridge

    Google Scholar 

  • Richardson CA (2001) Molluscs as archives of environmental change. In: Oceanography and Marine Biology, vol 39. Taylor & Francis Ltd., London, pp 103–164

  • Richardson AJ, Bakun A, Hays GC, Gibbons MJ (2009) The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends Ecol Evol 24:312–322. doi:10.1016/j.tree.2009.01.010

    Article  Google Scholar 

  • Roff DA (1983) An allocation model of growth and reproduction in fish. Can J Fish Aquat Sci 40:1395–1404. doi:10.1139/f83-161

    Article  Google Scholar 

  • Simkiss K, Wilbur KM (1989) Biomineralization: cell biology and mineral deposition. Academic Press Limited, California

    Google Scholar 

  • Sötje I, Neues F, Epple M, Ludwig W, Rack A, Gordon M, Boese R, Tiemann H (2011) Comparison of the statolith structures of Chironex fleckeri (Cnidaria, Cubozoa) and Periphylla periphylla (Cnidaria, Scyphozoa): a phylogenetic approach. Mar Biol:1–13. doi 10.1007/s00227-011-1637-3

  • Spangenberg DB (1967) Iodine induction of metamorphosis in Aurelia. J Exp Zool 165:441–449. doi:10.1002/jez.1401650312

    Article  CAS  Google Scholar 

  • Spangenberg DB (1986) Statolith formation in cnidaria: effects of cadmium on Aurelia statoliths. Scan Electron Micros 4:1609–1618

    Google Scholar 

  • Spangenberg DB, Beck CW (1968) Calcium sulfate dihydrate statoliths in Aurelia. Trans Am Microsc Soc 87:329–335

    Article  Google Scholar 

  • Spangenberg DB, Jernigan T, Philput C, Lowe B (1994) Graviceptor development in jellyfish ephyrae in space and on earth. Adv Space Res 14:317–325. doi:10.1016/0273-1177(94)90418-9

    Article  CAS  Google Scholar 

  • Templeman MA, Kingsford MJ (2010) Trace element accumulation in Cassiopea sp. (Scyphozoa) from urban marine environments in Australia. Mar Environ Res 69:63–72. doi:10.1016/j.marenvres.2009.08.001

    Article  CAS  Google Scholar 

  • Thorrold SR, Swearer SE (2009) Otolith chemistry. In: Green A, Mapstone B, Carlos G, Begg GA (eds) Tropical fish otoliths: information for assessment, management and ecology. Springer, The Netherlands, pp 249–295

    Chapter  Google Scholar 

  • Tiemann H, Sötje I, Jarms G, Paulmann C, Epple M, Hasse B (2002) Calcium sulfate hemihydrate in statoliths of deep-sea medusae. J Chem Soc Dalton Trans:1266–1268. doi:10.1039/b111524c

  • Todd BD, Thornhill DJ, Fitt WK (2006) Patterns of inorganic phosphate uptake in Cassiopea xamachana: a bioindicator species. Mar Pollut Bull 52:515–521. doi:10.1016/j.marpolbul.2005.09.044

    Article  CAS  Google Scholar 

  • Ueno S, Imai C, Mitsutani A (1995) Fine growth rings found in statolith of a cubomedusa Carybdea rastoni. J Plank Res 17:1381–1384. doi:10.1093/plankt/17.6.1381

    Article  Google Scholar 

  • Underwood AJ (1997) Experiments in ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Volk EC, Schroder SL, Grimm JJ (1999) Otolith thermal marking. Fish Res 43:205–219. doi:10.1016/s0165-7836(99)00073-9

    Article  Google Scholar 

  • West EJ, Welsh DT, Pitt KA (2009) Influence of decomposing jellyfish on the sediment oxygen demand and nutrient dynamics. Jellyfish Blooms Causes Conseq Recent Adv 206:151–160. doi:10.1007/978-1-4020-9749-2_11

    Google Scholar 

  • Widmer CL (2005) Effects of temperature on growth of north-east Pacific moon jellyfish ephyrae, Aurelia labiata (Cnidaria: Scyphozoa). J Mar Biol Assoc UK 85:569–573. doi:10.1017/S0025315405011495

    Article  Google Scholar 

  • Winans A, Purcell J (2010) Effects of pH on asexual reproduction and statolith formation of the scyphozoan, Aurelia labiata. Hydrobiologia 645:39–52. doi:10.1007/s10750-010-0224-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thank you to Michelle Templeman for advice and support on the culturing of Cassiopea sp. Thank you also to the staff at the Marine & Aquaculture Research Unit and the Advanced Analytical Centre, James Cook University for assistance with culturing and SEM analysis, respectively. Financial support was provided by Marine and Tropical Science Research Facility (MTSRF) and James Cook University (JCU). We would also like to thank the two anonymous reviewers for their comments, contributing to the improvement of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Hopf.

Additional information

Communicated by U. Sommer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hopf, J.K., Kingsford, M.J. The utility of statoliths and bell size to elucidate age and condition of a scyphomedusa (Cassiopea sp.). Mar Biol 160, 951–960 (2013). https://doi.org/10.1007/s00227-012-2146-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-2146-8

Keywords

Navigation