Skip to main content

Advertisement

Log in

How are fish assemblages and feeding guilds organized in different tropical coastal systems? Comparisons among oceanic beaches, bays and coastal lagoons

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Coastal ecosystems can vary considerably in their habitat characteristics and environmental conditions, resulting in divergent fish community structures. However, comparisons among coastal systems, such as oceanic beaches, bays and coastal lagoons, have not been thoroughly evaluated. We test the hypothesis that coastal systems that differ in wave exposure, habitat structure, salinity gradients and productivity show different assemblages and feeding guilds. The fish assemblages were significantly different among the systems. The bays had the largest number of species, whereas the lagoons had the highest numerical abundance and biomass. The planktivorous guild dominated in numerical abundance in all systems, whereas the opportunists dominated in biomass. The benthivores contributed greatly in abundance to the bays, the opportunists to the coastal lagoons, and the hyperbenthivores to the oceanic beaches. Water transparency and temperature explained a small portion of the variation in the community structure. This study highlighted the complex role that local factors have on the distribution of fishes at the species and trophic levels. These approaches were efficient to describe the structure and functioning of the assemblages in these different coastal systems. This should be viewed as essential for any comparisons of coastal systems, and in particular for conservation planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Able, K. W., 2005. A re-examination of fish estuarine dependence: evidence for connectivity between estuarine and ocean habitats. Estuarine, Coastal and Shelf Science 64: 5–17.

    Google Scholar 

  • Abrantes, K. G., R. Johnston, R. M. Connolly & M. Sheaves, 2015. Importance of mangrove carbon for aquatic food webs in wet-dry tropical estuaries. Estuaries and Coasts 38: 383–399.

    CAS  Google Scholar 

  • Amorim, E., S. Ramos, M. Elliott, A. Franco & A. A. Bordalo, 2017. Habitat loss and gain: influence on habitat attractiveness for estuarine fish communities. Estuarine, Coastal and Shelf Science 197: 244–257.

    Google Scholar 

  • Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA + for PRIMER: Guide to Software and Statistical Methods. Plymouth: PRIMER-E. [available on internet at http://www.primer-e.com].

  • Araújo, F. G., M. A. Silva, J. N. S. Santos & R. M. Vasconcellos, 2008. Habitat selection by anchovies (Clupeiformes, Engraulidae) in a tropical bay at Southeastern Brazil. Neotropical Ichthyology 6: 583–590.

    Google Scholar 

  • Araújo, F. G., M. C. C. Azevedo & A. P. P. Guedes, 2016. Inter-decadal changes in fish communities of a tropical bay in southeastern Brazil. Regional Studies in Marine Science 3: 107–118.

    Google Scholar 

  • Araújo, F. G., S. M. Pinto, L. M. Neves & M. C. C. Azevedo, 2017. Inter-annual changes in fish communities of a tropical bay in southeastern Brazil: what can be inferred from anthropogenic activities? Marine Pollution Bulletin 114: 102–113.

    PubMed  Google Scholar 

  • Azevedo, M. C. C., R. F. Gomes-Gonçalves, T. M. Mattos, W. Uehara, G. H. S. Guedes & F. G. Araújo, 2017. Taxonomic and functional distinctness of the fish assemblages in three coastal environments (bays, coastal lagoons and oceanic beaches) in Southeastern Brazil. Marine Environmental Research 129: 180–188.

    CAS  PubMed  Google Scholar 

  • Baker, R. & M. Sheaves, 2006. Visual surveys reveal high densities of large piscivores in shallow estuarine nurseries. Marine Ecology Progress Series 323: 75–82.

    Google Scholar 

  • Barletta, M., A. Barletta-Bergan & U. Saint-Paul, 1998. Description of the fisheries structure in the mangrove dominated region of Bragança (State of Pará, North Brazil). Ecotropica 4: 41–53.

    Google Scholar 

  • Bastos, A. C. & C. G. Silva, 2000. Morphodynamic characterization of the North coast of Rio de Janeiro, RJ, Brazil. Revista Brasileira de Oceanografia 48(1): 32–40.

    Google Scholar 

  • Beck, M. W., K. L. Heck Jr., K. W. Able, D. Childers, D. Eggleston, B. M. Gillanders, B. Halpern, C. Hays, K. Hoshino, T. Minello, R. Orth, P. Sheridan & M. Weinstein, 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51: 633–641.

    Google Scholar 

  • Belo, W. C., G. T. M. Dias & M. S. Dias, 2002. The marine bottom of Ilha Grande Bay, RJ: the submarine relief and the sedimentation in the central channel. Revista Brasileira de Geofísica 20(1): 5–15. (in Portuguese).

    Google Scholar 

  • Bennett, B. A., 1989. The fish community of a moderately exposed beach on the southwestern cape coast of South Africa and an assessment of this habitat a nursery for juvenile fish. Estuarine Coastal and Shelf Science 28: 293–305.

    Google Scholar 

  • Beyst, B., K. Hostens & J. Mees, 2001. Factors influencing fish and macrocrustacean communities in the surf zone of sandy beaches in Belgium: temporal variation. Journal of Sea Research 46: 281–294.

    Google Scholar 

  • Blaber, S. J. M., D. T. Brewer & J. P. Salini, 1995. Fish communities and the nursery role of the shallow inshore waters of a tropical bay in the gulf of Carpentaria, Australia. Estuarine, Coastal and Shelf Science 40(2): 177–193.

    Google Scholar 

  • Carvalho, B. M. & H. L. Spach, 2015. Habitat use by Atherinella brasiliensis (Quoy & Gaimard, 1825) in intertidal zones of a subtropical estuary, Brazil. Acta Scientiarum. Biological Sciences 37(2): 177–184.

    Google Scholar 

  • Clark, B. M., 1997. Variation in surf-zone fish community structure across a wave-exposure gradient. Estuarine Coastal and Shelf Science 44: 659–674.

    Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2015. PRIMER v7: User Manual/Tutorial. PRIMER-E, Plymouth.

    Google Scholar 

  • Connell, J. H., 1980. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35: 131–138.

    Google Scholar 

  • Costa, M. R. & F. G. Araújo, 2003. Use of a tropical bay in southeastern Brazil by juvenile and subadult Micropogonias furnieri (Perciformes. Sciaenidae). ICES Journal of Marine Sciences. 60: 268–277.

    Google Scholar 

  • Costa, K. G., T. R. Bezerra, M. C. Monteiro, M. Vallinoto, J. F. Berrêdo, L. C. C. Pereira & R. M. Costa, 2013. Tidal-induced changes in the zooplankton community of an Amazon estuary. Journal of Coastal Research 29: 756–765.

    Google Scholar 

  • Cunha, C. L. N., P. C. C. Rosmam, A. P. Ferreira & T. C. N. Monteiro, 2006. Hydrodynamics and water quality models applied to Sepetiba Bay. Continental Shelf Research 26: 1940–1953.

    Google Scholar 

  • Day, J. W. & A. Yáñez-Arancibia, 1985. Coastal lagoons and estuaries as an environment for nekton. In Yañez-Arancíbia, A. (ed), Fish Community Ecology in Estuaries and Coastal Lagoons: Towards an Ecosystem Integration. Univ. Nal. Aut. Mex. Press., Mexico City: 17–34.

    Google Scholar 

  • Defeo, O., A. Mclachlan, D. S. Schoeman, T. A. Schlacher, J. Dugan, A. Jones, M. Lastra & F. Scapini, 2009. Threats to sandy beach ecosystems: a review. Estuarine, Coastal and Shelf Science 81: 1–12.

    Google Scholar 

  • Duck, R. W. & J. F. Da Silva, 2012. Coastal lagoons and their evolution: a hydromorphological perspective. Estuarine, Coastal and Shelf Science 110: 2–14.

    Google Scholar 

  • Elliott, M. & A. K. Whitfield, 2011. Challenging paradigms in estuarine ecology and management. Estuarine, Coastal and Shelf Science 94: 306–314.

    Google Scholar 

  • Elliott, M., A. K. Whitfield, I. C. Potter, S. J. M. Blaber, D. P. Cyrus, F. G. Nordlie & T. D. Harrison, 2007. The guild approach to categorizing estuarine fish assemblages: a global review. Fish and Fisheries 8(3): 241–268.

    Google Scholar 

  • FAO, 2011. Review of the state of world marine fisshery resources. FAO Fisheries and Aquaculture Technical Paper No. 569. Rome, FAO. 334 pp.

  • França, S., M. J. Costa & H. N. Cabral, 2009. Assessing habitat specific fish assemblages in estuaries along the Portuguese coast. Estuarine, Coastal and Shelf Science 83: 1–12.

    Google Scholar 

  • Franco, A. C. S. & L. N. Santos, 2018. Habitat-dependent responses of tropical fish assemblages to environmental variables in a marine-estuarine transitional system. Estuarine, Coastal and Shelf Science 211: 110–117.

    CAS  Google Scholar 

  • Franco, T. P., C. Q. Albuquerque, R. S. Santos, T. D. Saint-Pierre & F. G. Araújo, 2019a. Leave forever or return home? The case of the whitemouth croaker Micropogonias furnieri in coastal systems of southeastern Brazil indicated by otolith microchemistry. Marine Environmental Research 144: 28–35.

    CAS  PubMed  Google Scholar 

  • Franco, T. P., L. N. Neves & F. G. Araújo, 2019b. Better with more or less salt? The association of fish assemblages in coastal lagoons with different salinity ranges. Hydrobiologia 828(1): 83–100.

    Google Scholar 

  • García-Seoane, E., M. Dolbeth, C. L. Silva, A. Abreu & J. E. Rebelo, 2016. Changes in the fish assemblages of a coastal lagoon subjected to gradual salinity increases. Marine Environmental Research 122: 178–187.

    PubMed  Google Scholar 

  • Gray, C. A., D. Rotherham & D. D. Johnson, 2011. Consistency of temporal and habitat-related differences among assemblages of fish in coastal lagoons. Estuarine, Coastal and Shelf Science 95: 401–414.

    Google Scholar 

  • Guerra, J. V. & F. L. M. Soares, 2009. Circulation and flux of suspended particulate matter in Ilha Grande Bay, SE Brazil. Journal of Coastal Research 56: 1350–1354.

    Google Scholar 

  • Guidetti, P., 2000. Differences among fish assemblages associated with nearshore Posidonia oceanica seagrass beds, rocky–algal reefs and unvegetated sand habitats in the Adriatic Sea. Estuarine, Coastal and Shelf Science 50(4): 515–529.

    Google Scholar 

  • Hagan, S. M. & K. W. Able, 2003. Seasonal changes of the pelagic fish assemblage in a temperate estuary. Estuarine, Coastal and Shelf Science 56: 15–29.

    Google Scholar 

  • Henriques, S., P. Cardoso, I. Cardoso, M. Laborde, H. N. Cabral & R. P. Vasconcelos, 2017. Processes underpinning fish species composition patterns in estuarine ecosystems worldwide. Journal of Biogeography 44(3): 627–639.

    Google Scholar 

  • Hildebrand, S. F., 1963. Family Engraulidae. Memoiries sears foundation for marine research 1: 152–249.

    Google Scholar 

  • James, N. C., P. D. Cowley & A. K. Whitfield, 2018. The marine fish assemblage of the East Kleinemonde Estuary over 20 years: declining abundance and nursery function? Estuarine, Coastal and Shelf Science 214: 64–71.

    Google Scholar 

  • Johnston, R., M. Sheaves & B. Molony, 2007. Are distributions of fishes in tropical estuaries influenced by turbidity over small spatial scales? Journal of Fish Biology 71: 657–671.

    Google Scholar 

  • Kjerfve, B., C. A. F. Schettini, B. Knoppers, G. Lessa & H. O. Ferreira, 1996. Hydrology and salt balance in a large, hypersaline coastal lagoon: Lagoa de Araruama, Brazil. Estuarine, Coastal and Shelf Science 42: 701–725.

    CAS  Google Scholar 

  • Knoppers, B., B. Kjerfve & J. P. Carmouze, 1991. Trophic state and water turnover time in six choked lagoons in Brazil. Biogeochemistry 14: 149–166.

    CAS  Google Scholar 

  • Lasiak, T. A., 1981. Nursery grounds of juvenile teleosts: evidence from the surf-zone of King’s Beach, Port Elizabeth. South African Journal of Marine Science 77: 388–390.

    Google Scholar 

  • Loureiro, S. N., J. A. Reis-Filho & T. Giarrizzo, 2016. Evidence for habitat-driven segregation of an estuarine fish assemblage. Journal of Fish Biology 89: 804–820.

    CAS  PubMed  Google Scholar 

  • Macedo-Soares, P. H. M., A. C. Petry, V. F. Farjalla & E. P. Caramaschi, 2010. Hydrological connectivity in coastal inland systems: lessons from a Neotropical fish metacommunity. Ecology of Freshwater Fish 19: 7–18.

    Google Scholar 

  • Mariani, S., 2001. Can spatial distribution of ichthyofauna describe marine influence on coastal lagoons? A central mediterranean case study. Estuarine, Coastal and Shelf Science 52(2): 261–267.

    Google Scholar 

  • Mclachlan, A., 1980. The definition of sandy beaches in relation to exposure: a simple system. South African Journal of Marine Science 76: 137–138.

    Google Scholar 

  • Mouchet, M. A., M. D. M. Burns, A. M. Garcia, J. P. Vieira & D. Mouillot, 2013. Invariant scaling relationship between functional dissimilarity and co-occurrence in fish assemblages of the Patos Lagoon estuary (Brazil): environmental filtering consistently overshadows competitive exclusion. Oikos 122: 247–257.

    Google Scholar 

  • Neves, L. M., H. H. Pereira, M. R. Costa & F. G. Araújo, 2006. The use of the Guaratiba mangrove, Sepetiba Bay, Rio de Janeiro, by the silverside Atherinella brasiliensis (Quoy & Gaimard) (Atheriniformes, Atherinopsidae). Revista Brasileira de Zoologia 23: 421–428. (in Portuguese).

    Google Scholar 

  • Olds, A. D., E. Vargas-Fonseca, R. M. Connolly, B. L. Gilby, C. M. Huijbers, G. A. Hyndes, C. A. Layman, A. K. Whitfield & T. A. Schlacher, 2018. The ecology of fish in the surf zones of ocean beaches: a global review. Fish and Fisheries 19: 78–89.

    Google Scholar 

  • Páez, Y. C., C. M. Aguilar-Betancourt, G. González-Sansón, F. Negrete-Rodríguez & M. Gray, 2018. Sediment granulometry and salinity drive spatial and seasonal variability of an estuarine demersal fish assemblage dominated by juvenile fish. Estuarine, Coastal and Shelf Science 212: 241–252.

    Google Scholar 

  • Pauly, D., 1988. Fisheries research and the demersal fisheries of Southeast Asia. In Gulland, J. A. (ed), Fish Population Dynamics. Wiley, New York: 329–348.

    Google Scholar 

  • Pérez-Ruzafa, A., F. Pascalis, M. Ghezzo, J. I. Quispe-Becerra, R. Hernández-García, I. Muñoz, C. Vergara, I. M. Pérez-Ruzafa, G. Umgiesser & C. Marcos, 2019. Connectivity between coastal lagoons and sea: asymmetrical effects on assemblages’ and populations’ structure. Estuarine, Coastal and Shelf Science 216: 171–186.

    Google Scholar 

  • Pessanha, A. L. M. & F. G. Araújo, 2003. Spatial, temporal and diel variations of fish assemblages at two sandy beaches in the Sepetiba Bay, Rio de Janeiro, Brazil. Estuarine Coastal and Shelf Science 57(5–6): 817–828.

    Google Scholar 

  • Pichler, H. E., H. L. Spach, C. A. Gray, M. K. Broadhurst, R. Schwarz-Jr & J. F. Oliveira-Neto, 2015. Environmental influences on resident and transient fishes across shallow estuarine beaches and tidal flats in a Brazilian World Heritage area. Estuarine, Coastal and Shelf Science 164: 482–492.

    Google Scholar 

  • Potter, I. C., B. M. Chuwen, S. D. Hoeksema & M. Elliott, 2010. The concept of an estuary: a definition that incorporates systems which can become closed to the ocean and hypersaline. Estuarine, Coastal and Shelf Science 87: 497–500.

    CAS  Google Scholar 

  • Ribeiro, J., L. Bentes, R. Coelho, J. M. S. Goncalves, P. G. Lino, P. Monteiro & K. Erzini, 2006. Seasonal, tidal and diurnal changes in fish assemblages in the Ria Formosa lagoon (Portugal). Estuarine, Coastal and Shelf Science 67: 461–474.

    Google Scholar 

  • Robertis, A., C. H. Ryer, A. Veloza & R. D. Brodeur, 2003. Differential effects of turbidity on prey consumption of piscivorous and planktivorous fish. Canadian Journal of Fisheries and Aquatic Sciences 60: 1517–1526.

    Google Scholar 

  • Rodrigues, F. L. & J. P. Vieira, 2013. Surf zone fish abundance and diversity at two sandy beaches separated by long rocky jetties. Journal of the Marine Biological Association of the United Kingdom 93(4): 867–875.

    Google Scholar 

  • Romer, G. S., 1990. Surf zone fish community and species response to wave energy gradient. Journal of Fish Biology 36: 279–287.

    Google Scholar 

  • Ross, S. W., 2003. The relative value of different estuarine nursery areas in North Carolina for transient juvenile marine fishes. Fishery Bulletin 101: 384–404.

    Google Scholar 

  • Schlacher, T. A. D., S. Schoeman, J. Dugan, M. Lastra, A. Jones, F. Scapini & A. Mclachlan, 2008. Sandy beach ecosystems: key features, sampling issues, management challenges and climate change impacts. Marine Ecology 29(Suppl. 1): 70–90.

    Google Scholar 

  • Schloesser, R. W. & M. C. Fabrizio, 2018. Nursery habitat quality assessed by the condition of juvenile fishes: not all estuarine areas are equal. Estuaries and Coasts 42: 1–19.

    Google Scholar 

  • Sheaves, M., 2009. Consequences of ecological connectivity: the coastal ecosystem mosaic. Marine Ecology Progress Series 391: 107–115.

    Google Scholar 

  • Sheaves, M., 2016. Simple processes drive unpredictable differences in estuarine fish assemblages: baselines for understanding site-specific ecological and anthropogenic impacts. Estuarine, Coastal and Shelf Science 170: 61–69.

    Google Scholar 

  • Sheaves, M. & R. Johnston, 2009. Ecological drivers of spatial variability among fish fauna of 21 tropical Australian estuaries. Marine Ecology Progress Series 85: 245–260.

    Google Scholar 

  • Signorini, S. R., 1980. A study of circulation in Bay of Ilha Grande and Bay of Sepetiba part II. An assessment to the tidally and wind driven circulation using a finite element numerical model. Boletim do Instituto Oceanografico 29: 57–68.

    Google Scholar 

  • Silva, M. A., F. G. Araújo, M. C. C. Azevedo & J. N. S. Santos, 2004. The nursery function of sandy beaches in a Brazilian tropical bay for 0-group anchovies (Teleostei: Engraulidae): diel, seasonal and spatial patterns. Journal of the Marine Biological Association of the United Kingdom 84: 1229–1232.

    Google Scholar 

  • Souza, J. S., L. N. Santos & A. F. G. N. Santos, 2018. Habitat features not water variables explain most of fish assemblages use of sandy beaches in a Brazilian eutrophic bay. Estuarine, Coastal and Shelf Science 211: 100–109.

    Google Scholar 

  • StatSoft Inc., 2011. STATISTICA (data analysis software system), version 10. [available on internet at www.statsoft.com].

  • Tittensor, D., C. Mora, W. Jetz, H. Lotze, D. Ricard, E. Vanden-Berghe & B. Worm, 2010. Global patterns and predictors of marine biodiversity across taxa. Nature 466: 1098–1101.

    CAS  PubMed  Google Scholar 

  • Van der Veer, H. W., R. Dapper, P. A. Henderson, A. S. Jung, C. J. M. Philippart, J. I. J. Witte & A. F. Zuur, 2015. Changes over 50 years in fish fauna of a temperate coastal sea: degradation of trophic structure and nursery function. Estuarine Coastal and Shelf Science 155: 156–166.

    Google Scholar 

  • Vasconcelos, R. P., P. Reis-Santos, M. J. Costa & H. N. Cabral, 2011. Connectivity between estuaries and marine environment: integrating metrics to assess estuarine nursery function. Ecological Indicators 11: 1123–1133.

    Google Scholar 

  • Vasconcelos, R. P., S. Henriques, S. Franca, S. Pasquaud, I. Cardoso, M. Laborde & H. N. Cabral, 2015. Global patterns and predictors of fish species richness in estuaries. Journal of Animal. Ecology 84: 1331–1341.

    PubMed  Google Scholar 

  • Velázquez-Velázquez, E., M. E. Vega-Cendejas & J. Navarro-Alberto, 2008. Spatial and temporal variation of fish assemblages in a coastal lagoon of the Biosphere Reserve La Encrucijada, Chiapas, Mexico. Revista de Biología Tropical 56: 557–574.

    PubMed  Google Scholar 

  • Whitfield, A. K., 1999. Ichthyofaunal assemblages in estuaries: a South African case study. Reviews in Fish Biology and Fisheries 9: 151–186.

    Google Scholar 

Download references

Acknowledgements

We greatly appreciate the field and laboratory assistance of Gustavo Guedes, Tailan Moretti Mattos and Wagner Uehara. This study was partially supported by the Project Pesquisa Marinha e Pesqueira, a compensatory measure established by Conduct Adjustment Term responsibility of the Chevron Company, conducted by the Federal Public Ministry – MPF/RJ, with the implementation of the Fundo Brasileiro para a Biodiversidade – Funbio, Proc. 05/2016. CNPq – Conselho Nacional para o Desenvolvimento de Pesquisas (Proc. 304813/2015-0) and FAPERJ (Fundação Carlos Chagas de Amparo à Pesquisa do Rio de Janeiro (Proc. E-26/170.258/01) also support partially this study. This research was conducted under SISBIO Collection of Species Permit Number 10707 issued by ICMBio, Brazilian Environmental Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Gerson Araújo.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Handling editor: I. Nagelkerken

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 590 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Andrade-Tubino, M.F., Azevedo, M.C.C., Franco, T.P. et al. How are fish assemblages and feeding guilds organized in different tropical coastal systems? Comparisons among oceanic beaches, bays and coastal lagoons. Hydrobiologia 847, 403–419 (2020). https://doi.org/10.1007/s10750-019-04101-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04101-3

Keywords

Navigation