Skip to main content
Log in

Evidence for positive priming of leaf litter decomposition by contact with eutrophic pond sediments

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Organic matter processing controls the flow of carbon and nutrients through ecosystems. Heterotrophic metabolism within ponds is supported by both terrestrial leaf litter and autochthonous production. We investigated the potential for the priming of leaf litter decomposition in small ponds using microcosms. We incubated senescent tulip poplar (Liriodendron tulipifera) leaf discs in the dark for 130 days either in contact with eutrophic pond sediments or isolated from sediment contact. Leaves that had been in contact with the sediments were significantly less tough and lost more carbon mass following the incubation than leaves that were not in contact with the sediments, indicating that they were decomposing faster. We calculated a positive priming effect of the sediments of 42% and 77% based on the change in toughness and C mass loss, respectively. We further found that leaf discs that were in contact with the sediments had significantly less fungal biomass, measured as ergosterol mass, and less leaf-derived N in fungal biomass than the leaf discs isolated from the sediments. These results indicate that the presence of the more labile organic matter of the sediments alters the rate of organic matter mineralization and the cycling of nitrogen and carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available in the Zenodo repository, https://doi.org/10.5281/zenodo.2875782

References

  • Aerts, R., 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79: 439.

    Google Scholar 

  • Anderson, N. H. & J. R. Sedell, 1979. Detritus processing by macroinvertebrates in stream ecosystems. Annual Review of Entomology 24: 351–377.

    Google Scholar 

  • Baldy, V., M. O. Gessner & E. Chauvet, 1995. Bacteria, fungi and the breakdown of leaf litter in a large river. Oikos 74: 93.

    Google Scholar 

  • Baldy, V., E. Chauvet, J. Charcosset & M. Gessner, 2002. Microbial dynamics associated with leaves decomposing in the mainstem and floodplain pond of a large river. Aquatic Microbial Ecology 28: 25–36.

    Google Scholar 

  • Berggren, M., L. Ström, H. Laudon, J. Karlsson, A. Jonsson, R. Giesler, A.-K. Bergström, & M. Jansson, 2010. Lake secondary production fueled by rapid transfer of low molecular weight organic carbon from terrestrial sources to aquatic consumers: Terrestrial LMWC and lake secondary production. Ecology Letters 13: 870–880

    CAS  PubMed  Google Scholar 

  • Bengtsson, M. M., K. Attermeyer & N. Catalán, 2018. Interactive effects on organic matter processing from soils to the ocean: are priming effects relevant in aquatic ecosystems? Hydrobiologia 822: 1–17.

    CAS  Google Scholar 

  • Bianchi, T. S., 2011. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proceedings of the National Academy of Sciences 108: 19473–19481.

    CAS  Google Scholar 

  • Bianchi, T. S., D. C. O. Thornton, S. A. Yvon-Lewis, G. M. King, T. I. Eglinton, M. R. Shields, N. D. Ward & J. Curtis, 2015. Positive priming of terrestrially derived dissolved organic matter in a freshwater microcosm system: priming of dissolved organic matter. Geophysical Research Letters 42: 5460–5467.

    CAS  Google Scholar 

  • Carpenter, S. R., J. J. Cole, M. L. Pace, M. Van de Bogert, D. L. Bade, D. Bastviken, C. M. Gille, J. R. Hodgson, J. F. Kitchell & E. S. Kritzberg, 2005. Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology 86: 2737–2750.

    Google Scholar 

  • Danger, M., J. Cornut, E. Chauvet, P. Chavez, A. Elger & A. Lecerf, 2013. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect? Ecology 94: 1604–1613.

    PubMed  Google Scholar 

  • del Giorgio, P. A. & J. J. Cole, 1998. Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics 29: 503–541.

    Google Scholar 

  • Dorado-García, I., J. Syväranta, S. P. Devlin, J. M. Medina-Sánchez & R. I. Jones, 2016. Experimental assessment of a possible microbial priming effect in a humic boreal lake. Aquatic Sciences 78: 191–202.

    Google Scholar 

  • Downing, J., 2010. Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 29: 9–24.

    Google Scholar 

  • Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, J. M. Melack & J. J. Middelburg, 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51: 2388–2397.

    Google Scholar 

  • Fairchild, G. W., J. N. Anderson & D. J. Velinsky, 2005. The trophic state ‘chain of relationships’ in ponds: does size matter? Hydrobiologia 539: 35–46.

    CAS  Google Scholar 

  • Findlay, S., 2010. Stream microbial ecology. Journal of the North American Benthological Society 29: 170–181.

    Google Scholar 

  • Findlay, S. E. G., S. Dye & K. A. Kuehn, 2002a. Microbial growth and nitrogen retention in litter of Phragmites australis compared to Typha angustifolia. Wetlands 22: 616–625.

    Google Scholar 

  • Findlay, S., J. Tank, S. Dye, H. M. Valett, P. J. Mulholland, W. H. McDowell, S. L. Johnson, S. K. Hamilton, J. Edmonds, W. K. Dodds & W. B. Bowden, 2002b. A cross-system comparison of bacterial and fungal biomass in detritus pools of headwater streams. Microbial Ecology 43: 55–66.

    CAS  PubMed  Google Scholar 

  • Finlay, J. C. & C. Kendall, 2008. Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems stable isotopes in ecology and environmental science. Wiley, Chichester: 283–333.

    Google Scholar 

  • Fortino, K., S. Whalen & C. Johnson, 2014. Relationships between lake transparency, thermocline depth, and sediment oxygen demand in Arctic lakes. Inland Waters 4: 79–90.

    CAS  Google Scholar 

  • Gartner, T. B. & Z. G. Cardon, 2004. Decomposition dynamics in mixed-species leaf litter. Oikos 104: 230–246.

    Google Scholar 

  • Gessner, M. & E. Chauvet, 1997. Growth and production of aquatic hyphomycetes in decomposing leaf litter. Limnology and Oceanography 42: 496–505.

    CAS  Google Scholar 

  • Gessner, M. O., 1997. Fungal biomass production and sporulation associated with particulate organic matter in streams. Limnetica 13: 33–44.

    Google Scholar 

  • Gessner, M. O. & E. Chauvet, 1994. Importance of Stream microfungi in controlling breakdown rates of leaf litter. Ecology 75: 1807–1817.

    Google Scholar 

  • Graça, M. A. S. & M. Zimmer, 2005. Leaf Toughness. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds.), Methods to Study Litter Decomposition. Springer, Berlin: 121–125.

    Google Scholar 

  • Granéli, W. & W. Graneli, 1978. Sediment oxygen uptake in south swedish lakes. Oikos 30: 7.

    Google Scholar 

  • Grubbs, S. A. & K. W. Cummins, 1994. A leaf-toughness method for directly measuring the processing of naturally entrained leaf detritus in streams. Journal of the North American Benthological Society 13: 68–73.

    Google Scholar 

  • Gudasz, C., S. Sobek, D. Bastviken, B. Koehler & L. J. Tranvik, 2015. Temperature sensitivity of organic carbon mineralization in contrasting lake sediments: lake Sediment Temperature Sensitivity. Journal of Geophysical Research: Biogeosciences 120: 1215–1225.

    CAS  Google Scholar 

  • Guenet, B., M. Danger, L. Abbadie & G. Lacroix, 2010. Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91: 2850–2861.

    PubMed  Google Scholar 

  • Guenet, B., M. Danger, L. Harrault, B. Allard, M. Jauset-Alcala, G. Bardoux, D. Benest, L. Abbadie & G. Lacroix, 2014. Fast mineralization of land-born C in inland waters: first experimental evidences of aquatic priming effect. Hydrobiologia 721: 35–44.

    CAS  Google Scholar 

  • Guillemette, F. & P. A. del Giorgio, 2011. Reconstructing the various facets of dissolved organic carbon bioavailability in freshwater ecosystems. Limnology and Oceanography 56: 734–748.

    CAS  Google Scholar 

  • Halvorson, H. M., E. E. Scott, S. A. Entrekin, M. A. Evans-White & J. T. Scott, 2016. Light and dissolved phosphorus interactively affect microbial metabolism, stoichiometry and decomposition of leaf litter. Freshwater Biology 61: 1006–1019.

    CAS  Google Scholar 

  • Halvorson, H. M., J. R. Barry, M. B. Lodato, R. H. Findlay, S. N. Francoeur & K. A. Kuehn, 2019a. Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming. Functional Ecology 33: 188–201.

    PubMed  Google Scholar 

  • Halvorson, H. M., S. N. Francoeur, R. H. Findlay & K. A. Kuehn, 2019b. Algal-mediated priming effects on the ecological stoichiometry of leaf litter decomposition: a meta-analysis. Frontiers in Earth Science 7: 76.

    Google Scholar 

  • Hanson, P. C., S. R. Carpenter, J. A. Cardille, M. T. Coe & L. A. Winslow, 2007. Small lakes dominate a random sample of regional lake characteristics. Freshwater Biology 52: 814–822.

    Google Scholar 

  • Hargrave, B. T., 1969. Similarity of oxygen uptake by benthic communities. Limnology and Oceanography 14: 801–805.

    Google Scholar 

  • Kaushal, S. & M. Binford, 1999. Relationship between C:N ratios of lake sediments, organic matter sources, and historical deforestation in Lake Pleasant, Massachusetts, USA. Journal of Paleolimnology 22: 439–442.

    Google Scholar 

  • Kominoski, J. S., C. M. Pringle, B. A. Ball, M. A. Bradford, D. C. Coleman, D. B. Hall & M. D. Hunter, 2007. Nonadditive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream. Ecology 88: 1167–1176.

    CAS  PubMed  Google Scholar 

  • Kortelainen, P., M. Rantakari, J. T. Huttunen, T. Mattsson, J. Alm, S. Juutinen, T. Larmola, J. Silvola & P. J. Martikainen, 2006. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Global Change Biology 12: 1554–1567.

    Google Scholar 

  • Kritzberg, E. S., J. J. Cole, M. L. Pace, W. Granéli & D. L. Bade, 2004. Autochthonous versus allochthonous carbon sources of bacteria: results from whole-lake 13C addition experiments. Limnology and Oceanography 49: 588–596.

    CAS  Google Scholar 

  • Kuehn, K. A., S. N. Francoeur, R. H. Findlay & R. K. Neely, 2014. Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers. Ecology 95: 749–762.

    PubMed  Google Scholar 

  • Lecerf, A., G. Risnoveanu, C. Popescu, M. O. Gessner & E. Chauvet, 2007. Decomposition of diverse litter mixtures in streams. Ecology 88: 219–227.

    PubMed  Google Scholar 

  • Marcarelli, A. M., C. V. Baxter, M. M. Mineau & R. O. Hall, 2011. Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 92: 1215–1225.

    Google Scholar 

  • McGroddy, M. E., T. Daufresne & L. O. Hedin, 2004. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology 85: 2390–2401.

    Google Scholar 

  • Medeiros, A. O., C. Pascoal & M. A. S. Graça, 2009. Diversity and activity of aquatic fungi under low oxygen conditions. Freshwater Biology 54: 142–149.

    Google Scholar 

  • Meyers, P. A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 114: 289–302.

    CAS  Google Scholar 

  • Meyers, P. A. & R. Ishiwatari, 1993. Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry 20: 867–900.

    CAS  Google Scholar 

  • Ostrofsky, M. L., 1997. Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates. Journal of the North American Benthological Society 16: 750–759.

    Google Scholar 

  • Pascoal, C. & F. Cassio, 2004. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Applied and Environmental Microbiology 70: 5266–5273.

    CAS  PubMed  PubMed Central  Google Scholar 

  • R: A Language and Environment for Statistical Computing., 2014.R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/.

  • Rosemond, A. D., C. M. Swan, J. S. Kominoski & S. E. Dye, 2010. Non-additive effects of litter mixing are suppressed in a nutrient-enriched stream. Oikos 119: 326–336.

    Google Scholar 

  • Schlesinger, W. H. & E. S. Bernhardt, 2013. Biogeochemistry: An Analysis of Global Change. Academic Press, Amsterdam.

    Google Scholar 

  • Soares, M., E. S. Kritzberg & J. Rousk, 2017. Labile carbon ‘primes’ fungal use of nitrogen from submerged leaf litter. FEMS Microbiology 93: fix110.

    Google Scholar 

  • Sobek, S., R. Zurbrügg & I. Ostrovsky, 2011. The burial efficiency of organic carbon in the sediments of Lake Kinneret. Aquatic Sciences 73: 355–364.

    CAS  Google Scholar 

  • Su, R., K. A. Kuehn & S. W. Phipps, 2015. Fungal contributions to carbon flow and nutrient cycling during decomposition of standing Typha domingensis leaves in a subtropical freshwater marsh. Freshwater Biology 60: 2100–2112.

    CAS  Google Scholar 

  • Suberkropp, K. & E. Chauvet, 1995. Regulation of leaf breakdown by fungi in streams: influences of water chemistry. Ecology 76: 1433–1445.

    Google Scholar 

  • Swan, C. M. & M. A. Palmer, 2004. Leaf diversity alters litter breakdown in a Piedmont stream. Journal of the North American Benthological Society 23: 15–28.

    Google Scholar 

  • Swan, C. M., M. A. Gluth & C. L. Horne, 2009. Leaf litter species evenness influences nonadditive breakdown in a headwater stream. Ecology 90: 1650–1658.

    CAS  PubMed  Google Scholar 

  • Tranvik, L. J., J. A. Downing, J. B. Cotner, S. A. Loiselle, R. G. Striegl, T. J. Ballatore, P. Dillon, K. Finlay, K. Fortino, L. B. Knoll, P. L. Kortelainen, T. Kutser, S. Larsen, I. Laurion, D. M. Leech, S. L. McCallister, D. M. McKnight, J. M. Melack, E. Overholt, J. A. Porter, Y. Prairie, W. H. Renwick, F. Roland, B. S. Sherman, D. W. Schindler, S. Sobek, A. Tremblay, M. J. Vanni, A. M. Verschoor, E. von Wachenfeldt & G. A. Weyhenmeyer, 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54: 2298–2314.

    CAS  Google Scholar 

  • Wetzel, R. G., 1992. Gradient-dominated ecosystems: Sources and regulatory functions of dissolved organic matter in freshwater ecosystems. In Salonen, K., T. Kairesalo & R. I. Jones (eds.), Dissolved Organic Matter in Lacustrine Ecosystems: Energy Source and System Regulator. Springer, Dordrecht: 181–198.

    Google Scholar 

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems. Academic Press, San Diego.

    Google Scholar 

  • Weyers, H. S. & K. Suberkropp, 1996. Fungal and bacterial production during the breakdown of yellow poplar leaves in 2 streams. Journal of the North American Benthological Society 15: 408–420.

    Google Scholar 

Download references

Acknowledgements

We thank Julia Marcellus and Jen Andrews for assistance with the field and laboratory work. We also thank Hal Halvorson and Kevin Kuehn for completing the ergosterol measurements. The manuscript was greatly improved by comments by Hal Halvorson and two anonymous reviewers. This study was partially supported by the Longwood University PRISM program.

Author information

Authors and Affiliations

Authors

Contributions

KF and JH designed and executed the study. KF analyzed and interpreted the data and wrote the manuscript. MW measured the C:N of the samples and provided feedback on the manuscript and analysis and interpretation of the data.

Corresponding author

Correspondence to Kenneth Fortino.

Additional information

Handling editor: Stefano Amalfitano

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fortino, K., Hoak, J. & Waters, M.N. Evidence for positive priming of leaf litter decomposition by contact with eutrophic pond sediments. Hydrobiologia 847, 137–149 (2020). https://doi.org/10.1007/s10750-019-04077-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04077-0

Keywords

Navigation