Evidence for positive priming of leaf litter decomposition by contact with eutrophic pond sediments

  • Kenneth FortinoEmail author
  • Jessica Hoak
  • Matthew N. Waters
Primary Research Paper


Organic matter processing controls the flow of carbon and nutrients through ecosystems. Heterotrophic metabolism within ponds is supported by both terrestrial leaf litter and autochthonous production. We investigated the potential for the priming of leaf litter decomposition in small ponds using microcosms. We incubated senescent tulip poplar (Liriodendron tulipifera) leaf discs in the dark for 130 days either in contact with eutrophic pond sediments or isolated from sediment contact. Leaves that had been in contact with the sediments were significantly less tough and lost more carbon mass following the incubation than leaves that were not in contact with the sediments, indicating that they were decomposing faster. We calculated a positive priming effect of the sediments of 42% and 77% based on the change in toughness and C mass loss, respectively. We further found that leaf discs that were in contact with the sediments had significantly less fungal biomass, measured as ergosterol mass, and less leaf-derived N in fungal biomass than the leaf discs isolated from the sediments. These results indicate that the presence of the more labile organic matter of the sediments alters the rate of organic matter mineralization and the cycling of nitrogen and carbon.


Organic matter Fungi Carbon Nitrogen Mineralization Lentic 



We thank Julia Marcellus and Jen Andrews for assistance with the field and laboratory work. We also thank Hal Halvorson and Kevin Kuehn for completing the ergosterol measurements. The manuscript was greatly improved by comments by Hal Halvorson and two anonymous reviewers. This study was partially supported by the Longwood University PRISM program.

Author contributions

KF and JH designed and executed the study. KF analyzed and interpreted the data and wrote the manuscript. MW measured the C:N of the samples and provided feedback on the manuscript and analysis and interpretation of the data.


  1. Aerts, R., 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79: 439.CrossRefGoogle Scholar
  2. Anderson, N. H. & J. R. Sedell, 1979. Detritus processing by macroinvertebrates in stream ecosystems. Annual Review of Entomology 24: 351–377.CrossRefGoogle Scholar
  3. Baldy, V., M. O. Gessner & E. Chauvet, 1995. Bacteria, fungi and the breakdown of leaf litter in a large river. Oikos 74: 93.CrossRefGoogle Scholar
  4. Baldy, V., E. Chauvet, J. Charcosset & M. Gessner, 2002. Microbial dynamics associated with leaves decomposing in the mainstem and floodplain pond of a large river. Aquatic Microbial Ecology 28: 25–36.CrossRefGoogle Scholar
  5. Berggren, M., L. Ström, H. Laudon, J. Karlsson, A. Jonsson, R. Giesler, A.-K. Bergström, & M. Jansson, 2010. Lake secondary production fueled by rapid transfer of low molecular weight organic carbon from terrestrial sources to aquatic consumers: Terrestrial LMWC and lake secondary production. Ecology Letters 13: 870–880CrossRefGoogle Scholar
  6. Bengtsson, M. M., K. Attermeyer & N. Catalán, 2018. Interactive effects on organic matter processing from soils to the ocean: are priming effects relevant in aquatic ecosystems? Hydrobiologia 822: 1–17.CrossRefGoogle Scholar
  7. Bianchi, T. S., 2011. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proceedings of the National Academy of Sciences 108: 19473–19481.CrossRefGoogle Scholar
  8. Bianchi, T. S., D. C. O. Thornton, S. A. Yvon-Lewis, G. M. King, T. I. Eglinton, M. R. Shields, N. D. Ward & J. Curtis, 2015. Positive priming of terrestrially derived dissolved organic matter in a freshwater microcosm system: priming of dissolved organic matter. Geophysical Research Letters 42: 5460–5467.CrossRefGoogle Scholar
  9. Carpenter, S. R., J. J. Cole, M. L. Pace, M. Van de Bogert, D. L. Bade, D. Bastviken, C. M. Gille, J. R. Hodgson, J. F. Kitchell & E. S. Kritzberg, 2005. Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology 86: 2737–2750.CrossRefGoogle Scholar
  10. Danger, M., J. Cornut, E. Chauvet, P. Chavez, A. Elger & A. Lecerf, 2013. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect? Ecology 94: 1604–1613.CrossRefGoogle Scholar
  11. del Giorgio, P. A. & J. J. Cole, 1998. Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics 29: 503–541.CrossRefGoogle Scholar
  12. Dorado-García, I., J. Syväranta, S. P. Devlin, J. M. Medina-Sánchez & R. I. Jones, 2016. Experimental assessment of a possible microbial priming effect in a humic boreal lake. Aquatic Sciences 78: 191–202.CrossRefGoogle Scholar
  13. Downing, J., 2010. Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 29: 9–24.Google Scholar
  14. Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, J. M. Melack & J. J. Middelburg, 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51: 2388–2397.CrossRefGoogle Scholar
  15. Fairchild, G. W., J. N. Anderson & D. J. Velinsky, 2005. The trophic state ‘chain of relationships’ in ponds: does size matter? Hydrobiologia 539: 35–46.CrossRefGoogle Scholar
  16. Findlay, S., 2010. Stream microbial ecology. Journal of the North American Benthological Society 29: 170–181.CrossRefGoogle Scholar
  17. Findlay, S. E. G., S. Dye & K. A. Kuehn, 2002a. Microbial growth and nitrogen retention in litter of Phragmites australis compared to Typha angustifolia. Wetlands 22: 616–625.CrossRefGoogle Scholar
  18. Findlay, S., J. Tank, S. Dye, H. M. Valett, P. J. Mulholland, W. H. McDowell, S. L. Johnson, S. K. Hamilton, J. Edmonds, W. K. Dodds & W. B. Bowden, 2002b. A cross-system comparison of bacterial and fungal biomass in detritus pools of headwater streams. Microbial Ecology 43: 55–66.CrossRefGoogle Scholar
  19. Finlay, J. C. & C. Kendall, 2008. Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems stable isotopes in ecology and environmental science. Wiley, Chichester: 283–333.Google Scholar
  20. Fortino, K., S. Whalen & C. Johnson, 2014. Relationships between lake transparency, thermocline depth, and sediment oxygen demand in Arctic lakes. Inland Waters 4: 79–90.CrossRefGoogle Scholar
  21. Gartner, T. B. & Z. G. Cardon, 2004. Decomposition dynamics in mixed-species leaf litter. Oikos 104: 230–246.CrossRefGoogle Scholar
  22. Gessner, M. & E. Chauvet, 1997. Growth and production of aquatic hyphomycetes in decomposing leaf litter. Limnology and Oceanography 42: 496–505.CrossRefGoogle Scholar
  23. Gessner, M. O., 1997. Fungal biomass production and sporulation associated with particulate organic matter in streams. Limnetica 13: 33–44.Google Scholar
  24. Gessner, M. O. & E. Chauvet, 1994. Importance of Stream microfungi in controlling breakdown rates of leaf litter. Ecology 75: 1807–1817.CrossRefGoogle Scholar
  25. Graça, M. A. S. & M. Zimmer, 2005. Leaf Toughness. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds.), Methods to Study Litter Decomposition. Springer, Berlin: 121–125.CrossRefGoogle Scholar
  26. Granéli, W. & W. Graneli, 1978. Sediment oxygen uptake in south swedish lakes. Oikos 30: 7.CrossRefGoogle Scholar
  27. Grubbs, S. A. & K. W. Cummins, 1994. A leaf-toughness method for directly measuring the processing of naturally entrained leaf detritus in streams. Journal of the North American Benthological Society 13: 68–73.CrossRefGoogle Scholar
  28. Gudasz, C., S. Sobek, D. Bastviken, B. Koehler & L. J. Tranvik, 2015. Temperature sensitivity of organic carbon mineralization in contrasting lake sediments: lake Sediment Temperature Sensitivity. Journal of Geophysical Research: Biogeosciences 120: 1215–1225.Google Scholar
  29. Guenet, B., M. Danger, L. Abbadie & G. Lacroix, 2010. Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91: 2850–2861.CrossRefGoogle Scholar
  30. Guenet, B., M. Danger, L. Harrault, B. Allard, M. Jauset-Alcala, G. Bardoux, D. Benest, L. Abbadie & G. Lacroix, 2014. Fast mineralization of land-born C in inland waters: first experimental evidences of aquatic priming effect. Hydrobiologia 721: 35–44.CrossRefGoogle Scholar
  31. Guillemette, F. & P. A. del Giorgio, 2011. Reconstructing the various facets of dissolved organic carbon bioavailability in freshwater ecosystems. Limnology and Oceanography 56: 734–748.CrossRefGoogle Scholar
  32. Halvorson, H. M., E. E. Scott, S. A. Entrekin, M. A. Evans-White & J. T. Scott, 2016. Light and dissolved phosphorus interactively affect microbial metabolism, stoichiometry and decomposition of leaf litter. Freshwater Biology 61: 1006–1019.CrossRefGoogle Scholar
  33. Halvorson, H. M., J. R. Barry, M. B. Lodato, R. H. Findlay, S. N. Francoeur & K. A. Kuehn, 2019a. Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming. Functional Ecology 33: 188–201.CrossRefGoogle Scholar
  34. Halvorson, H. M., S. N. Francoeur, R. H. Findlay & K. A. Kuehn, 2019b. Algal-mediated priming effects on the ecological stoichiometry of leaf litter decomposition: a meta-analysis. Frontiers in Earth Science 7: 76.CrossRefGoogle Scholar
  35. Hanson, P. C., S. R. Carpenter, J. A. Cardille, M. T. Coe & L. A. Winslow, 2007. Small lakes dominate a random sample of regional lake characteristics. Freshwater Biology 52: 814–822.CrossRefGoogle Scholar
  36. Hargrave, B. T., 1969. Similarity of oxygen uptake by benthic communities. Limnology and Oceanography 14: 801–805.CrossRefGoogle Scholar
  37. Kaushal, S. & M. Binford, 1999. Relationship between C:N ratios of lake sediments, organic matter sources, and historical deforestation in Lake Pleasant, Massachusetts, USA. Journal of Paleolimnology 22: 439–442.CrossRefGoogle Scholar
  38. Kominoski, J. S., C. M. Pringle, B. A. Ball, M. A. Bradford, D. C. Coleman, D. B. Hall & M. D. Hunter, 2007. Nonadditive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream. Ecology 88: 1167–1176.CrossRefGoogle Scholar
  39. Kortelainen, P., M. Rantakari, J. T. Huttunen, T. Mattsson, J. Alm, S. Juutinen, T. Larmola, J. Silvola & P. J. Martikainen, 2006. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Global Change Biology 12: 1554–1567.CrossRefGoogle Scholar
  40. Kritzberg, E. S., J. J. Cole, M. L. Pace, W. Granéli & D. L. Bade, 2004. Autochthonous versus allochthonous carbon sources of bacteria: results from whole-lake 13C addition experiments. Limnology and Oceanography 49: 588–596.CrossRefGoogle Scholar
  41. Kuehn, K. A., S. N. Francoeur, R. H. Findlay & R. K. Neely, 2014. Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers. Ecology 95: 749–762.CrossRefGoogle Scholar
  42. Lecerf, A., G. Risnoveanu, C. Popescu, M. O. Gessner & E. Chauvet, 2007. Decomposition of diverse litter mixtures in streams. Ecology 88: 219–227.CrossRefGoogle Scholar
  43. Marcarelli, A. M., C. V. Baxter, M. M. Mineau & R. O. Hall, 2011. Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 92: 1215–1225.CrossRefGoogle Scholar
  44. McGroddy, M. E., T. Daufresne & L. O. Hedin, 2004. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology 85: 2390–2401.CrossRefGoogle Scholar
  45. Medeiros, A. O., C. Pascoal & M. A. S. Graça, 2009. Diversity and activity of aquatic fungi under low oxygen conditions. Freshwater Biology 54: 142–149.CrossRefGoogle Scholar
  46. Meyers, P. A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 114: 289–302.CrossRefGoogle Scholar
  47. Meyers, P. A. & R. Ishiwatari, 1993. Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry 20: 867–900.CrossRefGoogle Scholar
  48. Ostrofsky, M. L., 1997. Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates. Journal of the North American Benthological Society 16: 750–759.CrossRefGoogle Scholar
  49. Pascoal, C. & F. Cassio, 2004. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Applied and Environmental Microbiology 70: 5266–5273.CrossRefGoogle Scholar
  50. R: A Language and Environment for Statistical Computing., 2014.R Foundation for Statistical Computing, Vienna, Austria,
  51. Rosemond, A. D., C. M. Swan, J. S. Kominoski & S. E. Dye, 2010. Non-additive effects of litter mixing are suppressed in a nutrient-enriched stream. Oikos 119: 326–336.CrossRefGoogle Scholar
  52. Schlesinger, W. H. & E. S. Bernhardt, 2013. Biogeochemistry: An Analysis of Global Change. Academic Press, Amsterdam.Google Scholar
  53. Soares, M., E. S. Kritzberg & J. Rousk, 2017. Labile carbon ‘primes’ fungal use of nitrogen from submerged leaf litter. FEMS Microbiology 93: fix110.Google Scholar
  54. Sobek, S., R. Zurbrügg & I. Ostrovsky, 2011. The burial efficiency of organic carbon in the sediments of Lake Kinneret. Aquatic Sciences 73: 355–364.CrossRefGoogle Scholar
  55. Su, R., K. A. Kuehn & S. W. Phipps, 2015. Fungal contributions to carbon flow and nutrient cycling during decomposition of standing Typha domingensis leaves in a subtropical freshwater marsh. Freshwater Biology 60: 2100–2112.CrossRefGoogle Scholar
  56. Suberkropp, K. & E. Chauvet, 1995. Regulation of leaf breakdown by fungi in streams: influences of water chemistry. Ecology 76: 1433–1445.CrossRefGoogle Scholar
  57. Swan, C. M. & M. A. Palmer, 2004. Leaf diversity alters litter breakdown in a Piedmont stream. Journal of the North American Benthological Society 23: 15–28.CrossRefGoogle Scholar
  58. Swan, C. M., M. A. Gluth & C. L. Horne, 2009. Leaf litter species evenness influences nonadditive breakdown in a headwater stream. Ecology 90: 1650–1658.CrossRefGoogle Scholar
  59. Tranvik, L. J., J. A. Downing, J. B. Cotner, S. A. Loiselle, R. G. Striegl, T. J. Ballatore, P. Dillon, K. Finlay, K. Fortino, L. B. Knoll, P. L. Kortelainen, T. Kutser, S. Larsen, I. Laurion, D. M. Leech, S. L. McCallister, D. M. McKnight, J. M. Melack, E. Overholt, J. A. Porter, Y. Prairie, W. H. Renwick, F. Roland, B. S. Sherman, D. W. Schindler, S. Sobek, A. Tremblay, M. J. Vanni, A. M. Verschoor, E. von Wachenfeldt & G. A. Weyhenmeyer, 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54: 2298–2314.CrossRefGoogle Scholar
  60. Wetzel, R. G., 1992. Gradient-dominated ecosystems: Sources and regulatory functions of dissolved organic matter in freshwater ecosystems. In Salonen, K., T. Kairesalo & R. I. Jones (eds.), Dissolved Organic Matter in Lacustrine Ecosystems: Energy Source and System Regulator. Springer, Dordrecht: 181–198.CrossRefGoogle Scholar
  61. Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems. Academic Press, San Diego.Google Scholar
  62. Weyers, H. S. & K. Suberkropp, 1996. Fungal and bacterial production during the breakdown of yellow poplar leaves in 2 streams. Journal of the North American Benthological Society 15: 408–420.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Biological and Environmental Sciences, Longwood UniversityFarmvilleUSA
  2. 2.Southern Piedmont Agricultural Research and Extension Center, Virginia Polytechnic and State UniversityBlackstoneUSA
  3. 3.Crop, Soil and Environmental Sciences, Auburn UniversityAuburnUSA

Personalised recommendations