Skip to main content
Log in

Population genetic structure and demographic history of the scallop Argopecten purpuratus from Peru and Northern Chile: implications for management and conservation of natural beds

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The scallop Argopecten purpuratus is a heavily exploited resource along the coasts of Peru and north-central Chile, especially after El Niño events, when the species undergoes high increases in abundance. Little is known about its genetic structure or demographic history, two important factors to ensure sustainable exploitation. We sequenced the cytochrome oxidase I and cytochrome b genes of 116 individuals from six localities (between 05°44′S 80°53′W and 23°31′S 70°33′W). We found high levels of genetic diversity in the analyzed populations. No geographical structuring was observed in the haplotype network, which consisted of a few central, widely distributed haplotypes, and many derived population-specific haplotypes separated by few mutations. This pattern suggests a recent population expansion and moderate to low current gene flow among populations. Mismatch analysis, neutrality tests, and a Bayesian skyline analysis confirmed the occurrence of a past event of population expansion approximately 5,000 years ago, which coincides with increasingly stronger and more frequent El Niño events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguirre, A., 2007. Influencia de la calidad nutricional del seston sobre el crecimiento, condición reproductiva y composición química de la concha de abanico (Argopecten purpuratus). PhD dissertation, Facultad de Pesqueria, Universidad Nacional Agraria La Molina, Lima.

  • Aguirre-Velarde, A., F. Jeana, G. Thouzeau & J. F. Sainte-Marie, 2016. Effects of progressive hypoxia on oxygen uptake in juveniles of the Peruvian scallop, Argopecten purpuratus (Lamarck, 1819). Aquaculture 451: 385–389.

    CAS  Google Scholar 

  • Arntz, W. E., V. A. Gallardo, D. Gutiérrez, E. Isla, L. A. Levin, J. Mendo, C. Neira, G. T. Rowe, J. Tarazona & M. Wolff, 2006. El Niño and similar perturbation effects on the benthos of the Humboldt, California, and Benguela Current upwelling ecosystems. Advances in Geosciences 6: 243–265.

    Google Scholar 

  • Arruda, C. C. B., C. R. Beasley, M. Vallinoto, N. D. S. Marques-Silva & C. H. Tagliaro, 2009. Significant genetic differentiation among populations of Anomalocardia brasiliana (Gmelin, 1791): a bivalve with planktonic larval dispersion. Genetics and Molecular Biology 32: 423–430.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Avendaño, M., M. Cantillánez, G. Thouzeau & J. B. Peña, 2007. Artificial collection and early growth of spat of the scallop Argopecten purpuratus (Lamarck, 1819), in La Rinconada Marine Reserve, Antofagasta, Chile. Scientia Marina 71(1): 197–205.

    Google Scholar 

  • Avise, J. C., 2000. Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge.

    Google Scholar 

  • Baker, P., J. D. Austin, B. W. Bowen & S. M. Baker, 2008. Range-wide population structure and history of the northern quahog (Merceneria merceneria) inferred from mitochondrial DNA sequence data. ICES Journal of Marine Science 65: 155–163.

    Google Scholar 

  • Bandelt, H. J., P. Forster & A. Röhl, 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16: 37–48.

    CAS  PubMed  Google Scholar 

  • Barcena, V., H. Rivera & L. Ysla, 2011. Distribución larval y fijación postlarval de Argopecten purpuratus en relación a la profundidad, frente a Parachique, Bahía de Sechura. In Mendo, J. (ed.), Libro de Resúmenes del Seminario “Bases científicas y tecnológicas para incrementar la productividad del cultivo de concha de abanico en áreas de repoblamiento en la bahía de Sechura”. Piura: 5–9.

  • Bensasson, D., D. X. Zhang, D. L. Hartl & G. M. Hewitt, 2001. Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends in Ecology & Evolution 16: 314–321.

    CAS  Google Scholar 

  • Bore, D. & C. Martinez, 1980. Catálogo de Recursos Pesqueros de Chile-Santiago. Instituto de Fomento Pesquero, Chile Corfo.

    Google Scholar 

  • Bruford, M. W., O. Hanotte, J. F. Y. Brookfield & T. Burke, 1992. Single-locus and multilocus DNA fingerprinting. In Hoelzel, A. R. (ed.), Molecular Genetic Analysis of Populations: A Practical Approach. Oxford University Press, Oxford: 225–269.

    Google Scholar 

  • Cabrera P., & J. Mendo, 2011. Condición somática y reproductiva de la concha de abanico (Argopecten purpuratus) y su relación con variables ambientales, en la Bahía de Sechura, Piura. In Mendo, J. (ed.), Libro de Resúmenes del Seminario “Bases científicas y tecnológicas para incrementar la productividad del cultivo de concha de abanico en áreas de repoblamiento en la bahía de Sechura” Piura: 23–28.

  • Cantillánez, M., M. Avendaño, G. Thouzeau & M. Le Pennec, 2005. Reproductive cycle of Argopecten purpuratus (Bivalvia: Pectinidae) in La Rinconada marine reserve (Antofagasta, Chile): Response to environmental effects of El Niño and La Niña. Aquaculture 246: 181–195.

    Google Scholar 

  • Cantillánez, M., G. Thouzeau & M. Avendaño, 2007. Improving Argopecten purpuratus culture in northern Chile: results from the study of larval and post-larval stages in relation to environmental forcing. Aquaculture 272: 423–443.

    Google Scholar 

  • Cárdenas, L., J. C. Castilla & F. Viard, 2009. A phylogeographical analysis across three biogeographical provinces of the south-eastern Pacific: the case of the marine gastropod Concholepas concholepas. Journal of Biogeography 36: 969–981.

    Google Scholar 

  • Carré, M., M. Azzoug, I. Bentaleb, B. M. Chase, M. Fontugne, D. Jackson, M. P. Ledru, A. Maldonado, J. P. Sachs & A. J. Schauer, 2012. Mid-Holocene mean climate in the south eastern Pacific and its influence on South America. Quaternary International 253: 55–66.

    Google Scholar 

  • Carré, M., J. P. Sachs, S. Purca, A. J. Schauer, P. Braconnot, R. A. Falcón, M. Julien & D. Lavallée, 2014. Holocene history of ENSO variance and asymmetry in the eastern tropical Pacific. Science 345: 1045–1048.

    PubMed  Google Scholar 

  • Carstensen, D., J. Laudien, W. Sielfeld, M. E. Oliva & W. E. Arntz, 2010. Early larval development of Donax obesulus: response to El Niño temperature and salinity conditions. Journal of Shellfish Research 29: 361–368.

    Google Scholar 

  • Castilla, J. C. & P. A. Camus, 1992. The Humboldt-El Niño scenario: coastal benthic resources and anthropogenic influences, with particular reference to the 1982/83 ENSO. African Journal of Marine Science 12(1): 703–712.

    Google Scholar 

  • Castilla, J. C., A. G. Collins, C. P. Meyer, R. Guiñez & D. R. Lindberg, 2002. Recent introduction of the dominant tunicate, Pyura praeputialis (Urochordata, Pyuridae) to Antofagasta, Chile. Molecular Ecology 11(8): 1579–1584.

    CAS  PubMed  Google Scholar 

  • Chapman, J. W., A. M. Blakeslee, J. T. Carlton & M. R. Bellinger, 2008. Parsimony dictates a human introduction: on the use of genetic and other data to distinguish between the natural and human-mediated invasion of the European snail Littorina littorea in North America. Biological Invasions 10: 131–133.

    Google Scholar 

  • Chavez, F. P., 2005. Biological consequences of interannual to multidecadal variability. In Robinson, A. & K. Brink (eds), The Sea, Vol. 13. Harvard University Press, Cambridge: 643–679.

    Google Scholar 

  • Chavez, F. P., A. Bertrand, R. Guevara-Carrasco, P. Soler & J. Csirke, 2008. The northern Humboldt current system: brief history, present status and a view towards the future. Progress in Oceanography 79: 95–105.

    Google Scholar 

  • Cowen, R. K. & S. Sponaugle, 2009. Larval dispersal and marine population connectivity. Annual Review of Marine Science 1: 443–466.

    PubMed  Google Scholar 

  • de Aranzamendi, M. C., R. Bastida & C. N. Gardenal, 2011. Different evolutionary histories in two sympatric limpets of the genus Nacella (Patellogastropoda) in the South-western Atlantic coast. Marine Biology 158: 2405–2418.

    Google Scholar 

  • Díaz, A. & L. Ortlieb, 1993. El fenómeno ‘El Niño’ y los moluscos de la costa peruana. Bulletin de l’Institut Français d’Etudes Andines 22(1): 159–177.

    Google Scholar 

  • Díaz-Jaimes, P., M. U. Alcocer & E. A. Duval, 1999. Variación electroforética entre las poblaciones Central y Sureña de la Anchoveta Engraulis mordax Girard 1854 (Engraulidae, Pisces) de Baja California, México. Ciencias Marinas 25: 579–595.

    Google Scholar 

  • Drummond, A. J., M. A. Suchard, D. Xie & A. Rambaut, 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution. 29(8): 1969–1973.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duran, S., C. Palacin, M. A. Becerro, X. Turon & G. Giribet, 2004. Genetic diversity and population structure of the commercially harvested sea urchin Paracentrotus lividus (Echinodermata, Echinoidea). Molecular Ecology 13: 3317–3328.

    CAS  PubMed  Google Scholar 

  • Escribano, R. & P. Hidalgo, 2001. Circulación inducida por el viento en Bahía de Antofagasta, norte de Chile (23° S). Revista de Biología Marina y Oceanografía 36: 43–60.

    Google Scholar 

  • Excoffier, L. & H. E. L. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.

    PubMed  Google Scholar 

  • Excoffier, L., M. Foll & R. J. Petit, 2009. Genetic consequences of range expansions. Annual Review of Ecology, Evolution, and Systematics 40: 481–501.

    Google Scholar 

  • Fernández, M. V., S. Heras, F. Maltagliati, A. Turco & M. I. Roldán, 2011. Genetic structure in the blue and red shrimp Aristeus antennatus and the role played by hydrographical and oceanographical barriers. Marine Ecology Progress Series 421: 163–171.

    Google Scholar 

  • Fu, Y. X., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925.

    CAS  PubMed  PubMed Central  Google Scholar 

  • González-Hunt, R. M., 2010. Auge y crisis: la pesquería de la concha de abanico (Argopecten purpuratus) en la región Pisco-Paracas, costa sur del Perú. Espacio y Desarrollo 22: 25–51.

    Google Scholar 

  • Goodall-Copestake, W. P., G. A. Tarling & E. J. Murphy, 2012. On the comparison of population-level estimates of haplotype and nucleotide diversity: a case study using the gene cox1 in animals. Heredity 109: 50–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graig, A. K. & N. P. Sputy, 1971. Paleoecology of shellmounds at Otuma, Peru. Geographical Review 61: 125–132.

    Google Scholar 

  • Grant, W. S., 2015. Problems and cautions with sequence mismatch analysis and Bayesian Skyline Plots to infer historical demography. Journal of Heredity 106: 333–346.

    Google Scholar 

  • Harpending, H. C., 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology 66: 591–600.

    CAS  PubMed  Google Scholar 

  • Ho, S. Y. W., M. J. Phillips, A. Cooper & A. J. Drummond, 2005. Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Molecular Biology and Evolution 22: 1561–1568.

    CAS  PubMed  Google Scholar 

  • Ho, S. Y., U. Saarma, R. Barnett, J. Haile & B. Shapiro, 2008. The effect of inappropriate calibration: three case studies in molecular ecology. PLOS ONE 3: e1615.

    PubMed  PubMed Central  Google Scholar 

  • Hoeh, W. R., D. T. Stewart, B. W. Sutherland & E. Zouros, 1996. Cytochrome c oxidase sequence comparisons suggest an unusually high rate of mitochondrial DNA evolution in Mytilus (Mollusca: Bivalvia). Molecular Biology and Evolution 13: 418–421.

    CAS  PubMed  Google Scholar 

  • Holsinger, K. E., 2006. Patterns of selection on nucleotide polymorphisms. Lecture Notes in Population Genetics. Department of Ecology and Evolutionary Biology, University of Connecticut, State of Connecticut, Storrs-Mansfield: 225–230.

    Google Scholar 

  • IMARPE, 2003. Identificación y Delimitación de Bancos Naturales de Recursos Bentónicos en el Litoral de la Región Moquegua. Informe Interno, Instituto del Mar del Perú.

    Google Scholar 

  • Kalendar, R., D. Lee & A. H. Schulman, 2009. FastPCR software for PCR primer and probe design and repeat search. Genes, Genomes and Genomics 3: 1–14.

    Google Scholar 

  • Kartavtsev, Y. & J. S. Lee, 2006. Analysis of nucleotide diversity at the cytochrome b and cytochrome oxidase 1 genes at the population, species, and genus levels. Russian Journal of Genetics 42: 341–362.

    CAS  Google Scholar 

  • Keefer, D. K. & M. E. Moseley, 2003. A 38 000-year record of floods and debris flows in the Ilo region of southern Peru and its relation to El Niño events and great earthquakes. Palaeogeography, Palaeoclimatology, Palaeoecology 194: 41–77.

    Google Scholar 

  • Lagos, N. A., J. C. Castilla & B. R. Broitman, 2008. Spatial environmental correlates of intertidal recruitment: a test using barnacles in northern Chile. Ecological Monographs 78: 245–261.

    Google Scholar 

  • Larson, W. A., L. W. Seeb, M. V. Everett, R. K. Waples, W. D. Templin & J. E. Seeb, 2014. Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha). Evolutionary Applications 7: 355–369.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, H. J. & E. G. Boulding, 2007. Mitochondrial DNA variation in space and time in the northeastern Pacific gastropod, Littorina keenae. Molecular Ecology 16: 3084–3103.

    CAS  PubMed  Google Scholar 

  • Lee, H. J. & E. G. Boulding, 2009. Spatial and temporal population genetic structure of four northeastern Pacific littorinid gastropods: the effect of mode of larval development on variation at one mitochondrial and two nuclear DNA markers. Molecular Ecology 18: 2165–2184.

    CAS  PubMed  Google Scholar 

  • Leigh, J. W. & D. Bryant, 2015. PopART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6(9): 1110–1116.

    Google Scholar 

  • Li, J., Y. Ye, C. Wu, P. Qi, B. Guo & Y. Chen, 2013. Genetic variation of Mytilus coruscus Gould (Bivalvia: Mytilidae) populations in the East China Sea inferred from mtDNA COI gene Sequence. Biochemical Systematics and Ecology 50: 30–38.

    CAS  Google Scholar 

  • Librado, P. & J. Rozas, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.

    CAS  PubMed  Google Scholar 

  • Lind, C. E., B. S. Evans, M. S. Elphinstone, J. J. Taylor & D. R. Jerry, 2012. Phylogeography of a pearl oyster (Pinctada maxima) across the Indo-Australian Archipelago: evidence of strong regional structure and population expansions but no phylogenetic breaks. Biological Journal of the Linnean Society 107: 632–646.

    Google Scholar 

  • Mao, Y., T. Gao, T. Yanagimoto & Y. Xiao, 2011. Molecular phylogeography of Ruditapes philippinarum in the Northwestern Pacific Ocean based on COI gene. Journal of Experimental Marine Biology and Ecology 407: 171–181.

    Google Scholar 

  • Marín, A., T. Fujimoto & K. Arai, 2013. Genetic structure of the Peruvian scallop Argopecten purpuratus inferred from mitochondrial and nuclear DNA variation. Marine Genomics 9: 1–8.

    PubMed  Google Scholar 

  • Maruyama, T. & P. A. Fuerst, 1985. Population bottlenecks and nonequilibrium models in population genetics. III. Genic homozygosity in populations which experience periodic bottlenecks. Genetics 111: 691–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto, M., 2003. Phylogenetic analysis of the subclass Pteriomorphia (Bivalvia) from mtDNA COI sequences. Molecular Phylogenetics and Evolution 27: 429–440.

    CAS  PubMed  Google Scholar 

  • Mendo, J. & M. Wolf, 2003. El impacto de El Niño sobre la producción de concha de abanico (Argopecten purpuratus) en Bahía Independencia, Pisco. Perú. Ecología Aplicada 2: 51–57.

    Google Scholar 

  • Mendo, J. M. Wolff, W. Carbajal, I. Gonzáles & M. Badjeck, 2008. Manejo y explotación de los principales bancos naturales de concha de abanico (Argopecten purpuratus) en la costa Peruana. In Lovatelli, A., A. Farías & I. Uriarte (eds), Estado actual del cultivo y manejo de moluscos bivalvos y su proyección futura: factores que afectan su sustentabilidad en América Latina. FAO Actas de Pesca y Acuicultura. Roma, FAO 12: 101–114.

  • Mendo, J., M. Wolff, T. Mendo & L. Ysla, 2016. Scallop fishery and culture in Peru. In Shumway, S. E. & G. J. Parsons (eds), Scallops: Biology, Ecology, Aquaculture and Fisheries. Elsevier, Oxford: 1089–1109.

    Google Scholar 

  • Merritt, T. J. S., L. Shi, M. C. Chase, M. A. Rex, R. J. Etter & J. M. Quattro, 1998. Universal cytochrome b primers facilitate intraspecific studies in molluscan taxa. Molecular Marine Biology and Biotechnology 7: 7–11.

    CAS  PubMed  Google Scholar 

  • Morón, O., 2000. Características del ambiente marino frente a la costa peruana. Boletín. Instituto del Mar del Perú 19(1–2): 179–204.

    Google Scholar 

  • Nei, M., T. Maruyama & R. Chakraborty, 1975. The bottleneck effect and genetic variability in populations. Evolution 29: 1–10.

    PubMed  Google Scholar 

  • Ortlieb, L., G. Vargas & J. F. Saliège, 2011. Marine radiocarbon reservoir effect along the northern Chile–southern Peru coast (14-24 S) throughout the Holocene. Quaternary Research 75: 91–103.

    CAS  Google Scholar 

  • Parson, M. H., 1970. Preceramic subsistence on the Peruvian coast. American Antiquity 35(3): 292–304.

    Google Scholar 

  • Petit, R. J., A. E. Mousadik & O. Pons, 1998. Identifying populations for conservation on the basis of genetic markers. Conservation Biology 12: 844–855.

    Google Scholar 

  • Pineda, J., J. A. Hare & S. Sponaugle, 2007. Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography 20: 22–39.

    Google Scholar 

  • Piñones, A., J. C. Castilla, R. Guiñez & J. L. Largier, 2007. Nearshore surface temperatures in Antofagasta Bay (Chile) and adjacent upwelling centers. Ciencias Marinas 33: 37–48.

    Google Scholar 

  • Posada, D., 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.

    CAS  PubMed  Google Scholar 

  • Pujolar, J. M., T. Marčeta, C. Saavedra, M. Bressan & L. Zane, 2010. Inferring the demographic history of the Adriatic Flexopecten complex. Molecular Phylogenetics and Evolution 57: 942–947.

    CAS  PubMed  Google Scholar 

  • Rambaut, A. & A. J. Drummond, 2009. Tracer v1.5 [available on internet at http://tree.bio.ed.ac.uk/software/tracer/].

  • Rogers, A. R. & H. Harpending, 1992. Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9: 552–569.

    CAS  PubMed  Google Scholar 

  • Ross, P. M., I. D. Hogg, C. A. Pilditch, C. J. Lundquist & R. J. Wilkins, 2012. Population genetic structure of the New Zealand estuarine clam Austrovenus stutchburyi (Bivalvia: Veneridae) reveals population subdivision and partial congruence with biogeographic boundaries. Estuaries and Coasts 35: 143–154.

    CAS  Google Scholar 

  • Rychlik, W., 1995. Selection of primers for polymerase chain reaction. Molecular Biotechnology 3: 129–134.

    CAS  PubMed  Google Scholar 

  • Sánchez, R., R. D. Sepúlveda, A. Brante & L. Cárdenas, 2011. Spatial pattern of genetic and morphological diversity in the direct developer Acanthina monodon (Gastropoda: Mollusca). Marine Ecology Progress Series 434: 121–131.

    Google Scholar 

  • Sandoval-Castellanos, E., M. Uribe-Alcocer & P. Díaz-Jaimes, 2010. Population genetic structure of the Humboldt squid (Dosidicus gigas d’Orbigny, 1835) inferred by mitochondrial DNA analysis. Journal of Experimental Marine Biology and Ecology 385: 73–78.

    CAS  Google Scholar 

  • Silva, S. E., I. C. Silva, C. Madeira, R. Sallema, O. S. Paulo & J. Paula, 2013. Genetic and morphological variation in two littorinid gastropods: evidence for recent population expansions along the East African coast. Biological Journal of the Linnean Society 108: 494–508.

    Google Scholar 

  • Slatkin, M., 1985. Gene flow in natural populations. Annual Review of Ecology, Evolution, and Systematics 16: 393–430.

    Google Scholar 

  • Śmietanka, B., A. Burzyński, H. Hummel & R. Wenne, 2014. Glacial history of the European marine mussels Mytilus, inferred from distribution of mitochondrial DNA lineages. Heredity 113: 250–258.

    PubMed  PubMed Central  Google Scholar 

  • Sromek, L., R. Lasota & M. Wolowicz, 2015. Impact of glaciations on genetic diversity of pelagic mollusks: Antarctic Limacina antarctica and Arctic Limacina helicina. Marine Ecology Progress Series 525: 143–152.

    Google Scholar 

  • Stotz, W. B. & S. A. González, 1997. Abundance, growth, and production of the sea scallop Argopecten purpuratus (Lamarck 1819): bases for sustainable exploitation of natural scallop beds in north-central Chile. Fisheries Research 32: 173–183.

    Google Scholar 

  • Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tarazona, J., R. Espinoza, M. Solís & W. Arntz, 2007. Crecimiento y producción somática de la concha de abanico (Argopecten purpuratus) en Bahía Independencia, Pisco (Perú) comparados entre eventos El Niño y La Niña. Revista de Biología Marina y Oceanografía 42: 275–285.

    Google Scholar 

  • Taylor, M., M. M. Wolff, J. Mendo & C. Yamashiro, 2008. Comparative analysis of trophic flow structure between normal upwelling and El Niño periods for Bahía Independencia, Peru. Progress in Oceanography 79: 336–351.

    Google Scholar 

  • Thiel, M., E. Macaya, E. Acuña, W. Arntz, H. Bastias, K. Brokordt, P. Camus, J. C. Castilla, L. R. Castro, M. Cortés, C. P. Dumont, R. Escribano, M. Fernández, D. Lancelloti, J. A. Gajardo, C. F. Gaymer, I. Gomez, A. E. González, H. E. González, P. A. Haye, J. E. Illanes, J. L. Iriarte, G. Luna- Jorquera, C. Luxoro, P. H. Manríquez, V. Marín, P. Muñoz, S. A. Navarrete, E. Pérez, E. Poulin, J. Sellanes, A. Sepúlveda, W. Stotz, F. Tala, A. Thomas, C. A. Vargas, J. A. Vásquez & A. Vega, 2007. The Humboldt Current System of northern and central Chile. Oceanographic processes, ecological interactions and socioeconomic feedback. Oceanography and Marine Biology 45: 195–344.

    Google Scholar 

  • Triant, D. A. & J. A. DeWoody, 2007. The occurrence, detection, and avoidance of mitochondrial DNA translocations in Mammalian systematics and phylogeography. Journal of Mammalogy 88: 908–920.

    Google Scholar 

  • Trovant, B., J. L. Orensanz, D. E. Ruzzante, W. Stotz & N. G. Basso, 2015. Scorched mussels (Bivalvia: Mytilidae: Brachidontinae) from the temperate coasts of South America: phylogenetic relationships, trans-Pacific connections and the footprints of Quaternary glaciations. Molecular Phylogenetics and Evolution 82: 60–74.

    PubMed  Google Scholar 

  • Urban, H. J. & J. Tarazona, 1996. Effects of El Niño/Southern Oscillation on the population dynamics of a Gari solida population (Bivalvia: Psammobiidae) from Bahía Independencia, Peru. Marine Biology 125: 725–734.

    Google Scholar 

  • Uribe, R. A., M. E. Oliva, S. Aguilar, C. Yamashiro & J. M. Riascos, 2012. Latitudinal variation in the reproductive cycle of two bivalves with contrasting biogeographical origin along the Humboldt Current Upwelling Ecosystem. Scientia Marina 76: 713–720.

    Google Scholar 

  • Vaidya, G., D. J. Lohman & R. Meier, 2011. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27: 171–180.

    PubMed  Google Scholar 

  • Valle, S., J. Tarazona, A. Indacochea, E. Ramos, W. Serrano, 2002. Variabilidad inducida por el ciclo del ENOS en la densidad poblacional de algunos invertebrados bentónicos de Bahía Independencia, Pisco, Perú. In Mendo, J. & Wolff, M. (eds), Bases ecológicas y socioeconómicas para el manejo de los recursos vivos de la Reserva Nacional de Paracas. Universidad Nacional Agraria La Molina: 68–76.

  • Vierna, J., K. T. Jensen, A. M. González-Tizón & A. Martínez-Lage, 2012. Population genetic analysis of Ensis directus unveils high genetic variation in the introduced range and reveals a new species from the NW Atlantic. Marine Biology 159: 2209–2227.

    Google Scholar 

  • Wares, J. P., 2010. Natural distributions of mitochondrial sequence diversity support new null hypotheses. Evolution: International Journal of Organic Evolution 64(4): 1136–1142.

    Google Scholar 

  • Whitlock, M. C. & D. E. Mccauley, 1999. Indirect measures of gene flow and migration: FST ≠ 1/(4Nm + 1). Heredity 82(2): 117–125.

    PubMed  Google Scholar 

  • Wolff, M., 1987. Population dynamics of the Peruvian scallop Argopecten purpuratus during the El Niño phenomenon of 1983. Canadian Journal of Fisheries and Aquatic Sciences 44: 1684–1691.

    Google Scholar 

  • Wolff, M., 1988. Spawning and recruitment in the Peruvian scallop Argopecten purpuratus. Marine Ecology Progress Series 42: 213–217.

    Google Scholar 

  • Wolff, M., M. Taylor, J. Mendo & C. Yamashiro, 2007. A catch forecast model for the Peruvian scallop (Argopecten purpuratus) based on estimators of spawning stock and settlement rate. Ecological Modelling 209: 333–341.

    Google Scholar 

  • Yuan, T., M. He & L. Huang, 2009. Intraspecific genetic variation in mitochondrial 16S rRNA and COI genes in domestic and wild populations of Huaguizhikong scallop Chlamys nobilis Reeve. Aquaculture 289: 19–25.

    CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to the teams of the Unidad de Investigaciones de Invertebrados Marinos, Instituto del Mar (IMARPE) of Peru and of the Instituto de Investigaciones Oceánicas (Universidad de Antofagasta) of Chile for their assistance in field work. Financial and logistic support for field work was provided by the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (Germany) in the frame of a co-operation project. Financial support for laboratory work was provided by grants of the Secretary of Science and Technique, National University of Córdoba. This work was carried out in the context of the PhD thesis of M.S. Acosta-Jofré at the National University of Córdoba, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Soledad Acosta-Jofré.

Additional information

Handling editor: Cecile Fauvelot

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 376 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acosta-Jofré, M.S., Sahade, R., Mendo, J. et al. Population genetic structure and demographic history of the scallop Argopecten purpuratus from Peru and Northern Chile: implications for management and conservation of natural beds. Hydrobiologia 847, 11–26 (2020). https://doi.org/10.1007/s10750-019-04048-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04048-5

Keywords

Navigation