Skip to main content
Log in

Onset of symbiosis in planula larvae of scleractinian corals

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The flexibility of symbiosis establishment between the corals Platygyra acuta and Acropora valida with the dinoflagellate Symbiodinium was examined. Planula larvae of these species were provided with homologous and heterologous sources of Symbiodinium C1 and Symbiodinium D8-12. These larvae were able to acquire symbionts prior to settlement and form symbiosis with both symbiont types from all sources, revealing flexibility of symbiosis establishment at this early stage of development. No significant difference in infection percentages was found among different sources of Symbiodinium C1, suggesting that host source of the symbiont types was unimportant. Symbiodinium D8-12 resulted in significantly higher infection rates in both species. While the advantage of hosting this heterologous symbiont type in coral larvae is unclear, this may simply be a result of the infectious nature of the clade D symbiont, rather than a selection choice of the host larvae. Settlement behavior of planula larvae of P. acuta did not depend upon their status of being symbiotic or aposymbiotic. Longer term post-settlement monitoring of the growth and survival of coral larvae may provide more insight on the benefits provided by earlier uptake of symbionts and also the hosting of clade D symbiont during pre-settlement stage of the larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Abrego, D., M. J. H. van Oppen & B. L. Willis, 2009a. Highly infectious symbiont dominates initial uptake in coral juveniles. Molecular Ecology 18: 3518–3531.

    Article  Google Scholar 

  • Abrego, D., M. J. H. van Oppen & B. L. Willis, 2009b. Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny. Molecular Ecology 19: 3532–3543.

    Article  Google Scholar 

  • Adams, L. M., V. Cumbo & M. Takabayashi, 2009. Exposure to sediment enhances primary acquisition of Symbiodinium by asymbiotic coral larvae. Marine Ecology Progress Series 377: 156–179.

    Article  Google Scholar 

  • Ang Jr., P., L. S. Choi, M. M. Choi, A. Cornish, H. L. Fung, M. W. Lee, T. P. Lin, W. C. Ma, M. C. Tam & S. Y. Wong, 2004. Hong Kong. Status of coral reefs of the East Asian Seas region: 2004. Japan Wildlife Research Centre, Ministry of the Environment, Government of Japan, Tokyo: 121–152.

    Google Scholar 

  • Baird, A. H., J. R. Guest & B. L. Willis, 2009. Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annual Review of Ecology, Evolution, and Systematics 40: 551–571.

    Article  Google Scholar 

  • Baker, A. C., 2001. Reef corals bleach to survive change. Nature 411: 765–766.

    Article  CAS  Google Scholar 

  • Bay, L. K., V. R. Cumbo, D. Abrego, J. T. Kool, T. D. Ainsworth & B. L. Willis, 2011. Infection dynamics vary between Symbiodinium types and cell surface treatments during establishment of endosymbiosis with coral larvae. Diversity 3: 356–374.

    Article  CAS  Google Scholar 

  • Buddemeier, R. W. & D. G. Fautin, 1993. Coral bleaching as an adaptive mechanism. BioScience 43: 320–326.

    Article  Google Scholar 

  • Cantin, N. E., M. J. H. van Oppen, B. L. Willies, J. C. Mieog & A. P. Negri, 2009. Juvenile corals can acquire more carbon from high-performance algal symbiont. Coral Reefs 28: 405–414.

    Article  Google Scholar 

  • Chui, A. P. Y. & P. Ang, 2015. Elevated temperature enhances normal early embryonic development in the coral Platygyra acuta under low salinity conditions. Coral Reefs 34: 461–469.

    Article  Google Scholar 

  • Chui, A. P. Y. & P. Ang, 2017. High tolerance to temperature and salinity change should enable scleractinian coral Platygyra acuta from marginal environments to persist under future climate change. PLoS ONE 12: e0179423. https://doi.org/10.1371/journal.pone.0179423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffroth, M. A., S. R. Santos & T. L. Goulet, 2001. Early ontogenetic expression of specificity in a cnidarian-algal symbiosis. Marine Ecology Progress Series 222: 85–96.

    Article  Google Scholar 

  • Cumbo, V. R., A. H. Baird & M. J. H. van Oppen, 2013. The promiscuous larvae: flexibility in the establishment of symbiosis in corals. Coral Reefs 32: 111–120.

    Article  Google Scholar 

  • Davy, S. K., D. Allemand & V. M. Weis, 2012. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiology and Molecular Biology Reviews 76: 229–261.

    Article  CAS  Google Scholar 

  • Fabricius, K. E., J. C. Mieog, P. L. Colin, D. Idip & M. J. H. van Oppen, 2004. Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Molecular Ecology 13: 2445–2458.

    Article  CAS  Google Scholar 

  • Fay, S. A. & M. X. Weber, 2012. The occurrence of mixed infections of Symbiodinium (dinoflagellata) within individual hosts. Journal of Phycology 48: 1306–1316.

    Article  Google Scholar 

  • Gómez-Cabrera, M. D. C., J. Ortiz, W. K. W. Loh, S. Ward & O. Hoegh-Guldberg, 2008. Acquisition of symbiotic dinoflagellates (Symbiodinium) by juveniles of the coral Acropora longicyathus. Coral Reefs 27: 219–226.

    Article  Google Scholar 

  • Harii, S., H. Kayanne, H. Takigawa, T. Hayashibara & M. Yamamoto, 2002. Larval survivorship, competency periods and settlement of two brooding corals, Heliopora coerulea and Pocillopora damicornis. Marine Biology 141: 39–46.

    Article  Google Scholar 

  • Harii, S., N. Yasuda, M. Rodriguez-Lanetty, T. Irie & M. Hidaka, 2009. Onset of symbiosis and distribution patterns of symbiotic dinoflagellates in the larvae of scleractinian corals. Marine Biology 156: 1203–1212.

    Article  Google Scholar 

  • Harii, S., M. Yamamoto & O. Hoegh-Guldberg, 2010. The relative contribution of dinoflagellate photosynthesis and stored lipids to the survivorship of symbiotic larvae of the reef-building corals. Marine Biology 157: 1215–1224.

    Article  CAS  Google Scholar 

  • Hayashibara, T., S. Ohike & Y. Kakinuma, 1997. Embryonic and larval development and planula metamorphosis of four gamete-spawning Acropora (Anthozoa, Scleractinia). Proceeding of 8th International Coral Reef Symposium 2: 1231–1236.

    Google Scholar 

  • Hirose, M., H. Yamamoto & M. Nonaka, 2008. Metamorphosis and acquisition of symbiotic algae in planula larvae and primary polyps of Acropora spp. Coral Reefs 27: 247–254.

    Article  Google Scholar 

  • Jones, A. M., R. Berkelmans, M. J. van Oppen, J. C. Mieog & W. Sinclair, 2008. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proceedings of the Royal Society B 275: 1359–1365.

    Article  CAS  Google Scholar 

  • Kopp, C., I. Domart-Coulon, D. Barthelemy, & A. Meibom, 2016. Nutritional input from dinoflagellate symbionts in reef-building corals is minimal during planula larval life stage. Science Advances 2: e1500681.

    Article  Google Scholar 

  • Kwok, C. K. & P. O. Ang, 2013. Inhibition of larval swimming activity of the coral (Platygyra acuta) by interactive thermal and chemical stresses. Marine Pollution Bulletin 74: 264–273.

    Article  CAS  Google Scholar 

  • Kwok, C. K., K. Y. Lam, S. M. Leung, A. P. Y. Chui & P. O. Ang, 2016. Copper and thermal perturbations on the early life processes of the hard coral Platygyra acuta. Coral Reefs 35: 827–838.

    Article  Google Scholar 

  • LaJeunesse, T. C., R. T. Smith, J. Finney & H. Oxenford, 2009. Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event. Proceedings of the Royal Society B 276: 4139–4148.

    Article  Google Scholar 

  • Lam, E. K. Y., A. P. Y. Chui, C. K. Kwok, A. H. P. Ip, S. W. Chan, H. N. Leung, L. C. Yeung & P. O. Ang, 2015. High levels of inorganic nutrients affect fertilization kinetics, early development and settlement of the scleractinian coral Platygyra acuta. Coral Reefs 34: 837–848.

    Article  Google Scholar 

  • Lee, M. J., H. J. Jeong, S. H. Jang, S. Y. Lee, N. S. Kang, K. H. Lee & T. C. LaJeunesse, 2016. Most low-abundance “background” Symbiodinium spp. are transitory and have minimal functional significance for symbiotic corals. Microbial Ecology 71: 771–783.

    Article  Google Scholar 

  • Little, A. F., M. J. H. van Oppen & B. L. Willis, 2004. Flexibility in algal endosymbioses shapes growth in reef corals. Science 304: 1492–1494.

    Article  CAS  Google Scholar 

  • Mcllroy, S. E. & M. A. Coffroth, 2017. Coral ontogeny affects early symbiont acquisition in laboratory-reared recruits. Coral Reefs 36: 927–932.

    Article  Google Scholar 

  • Mostafavi, P. G., S. M. R. Shahhosseiny, O. Hoegh-Guldberg & W. K. W. Loh, 2007. Predominance of clade D Symbiodinium in shallow-water reef-building corals off Kish and Larak Islands (Persian Gulf, Iran). Marine Biology 153: 25–34.

    Article  Google Scholar 

  • Muscatine, L., 1980. Productivity of zooxanthellae. In Falkowski, P. G. (ed.), Productivity in the Sea. Plenum, New York: 381–402.

    Chapter  Google Scholar 

  • Muscatine, L., 1990. The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reefs 25: 1–29.

    Google Scholar 

  • Muscatine, L. & J. W. Porter, 1977. Reef corals: mutualistic symbioses adapted to nutrient-poor environments. BioScience 27: 454–460.

    Article  Google Scholar 

  • Nesa, B., A. H. Baird, S. Harii, I. Yakovleva & M. Hidaka, 2012. Algal symbionts increase DNA damage in coral planulae exposed to sunlight. Zoological Studies 51: 12–17.

    CAS  Google Scholar 

  • Ng, T. Y. 2018. Symbiosis of scleractinian corals in a marginal environment. Ph.D. Thesis, The Chinese University of Hong Kong, Hong Kong SAR, China.

  • Ng, T. Y. & P. Ang, 2016. Low symbiont diversity as a potential adaptive strategy in a marginal non-reefal environment: a case study of corals in Hong Kong. Coral Reefs 35: 941–957.

    Article  Google Scholar 

  • Rodriguez-Lanetty, M., D. A. Krupp & V. M. Weis, 2004. Distinct ITS types of Symbiodinium in clade C correlate with cnidarian/dinoflagellate specificity during onset of symbiosis. Marine Ecology Progress Series 275: 97–102.

    Article  CAS  Google Scholar 

  • Rodriguez-Lanetty, M., E. M. Wool-Charlson, L. L. Hollingsworth, D. A. Krupp & V. M. Weis, 2006. Temporal and spatial infection dynamics indicate recognition events in the early hours of a dinoflagellate/coral symbiosis. Marine Biology 149: 713–719.

    Article  Google Scholar 

  • Schnitzler, C. E., L. L. Hollingsworth, D. A. Krupp & V. M. Weis, 2012. Elevated temperature impairs onset of symbiosis and reduces survivorship in larvae of the Hawaiian coral, Fungia scutaria. Marine Biology 159: 633–642.

    Article  Google Scholar 

  • Schwarz, J. A., D. A. Krupp & V. M. Weis, 1999. Late larval development and onset of symbiosis in the scleractinian coral Fungia scutaria. The Biological Bulletin 196: 70–79.

    Article  CAS  Google Scholar 

  • Silverstein, R. N., R. Cunning & A. C. Baker, 2015. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Global Change Biology 21: 236–249.

    Article  Google Scholar 

  • Silverstein, R. N., R. Cunning & A. C. Baker, 2017. Tenacious D: Symbiodinium in clade D remain in reef corals at both high and low temperature extremes despite impairment. Journal of Experimental Biology 220: 1192–1196.

    Article  Google Scholar 

  • Stat, M. & R. D. Gates, 2011. Clade D Symbiodinium in scleractinian corals: a “nugget” of hope, a selfish opportunist, an ominous sign, or all of the above? Journal of Marine Biology 2011: 1–9.

    Article  Google Scholar 

  • Stat, M., W. K. W. Loh, T. C. LaJeunesse, O. Hoegh-Guldberg & D. A. Carter, 2009. Stability of coral–endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef. Coral Reefs 28: 709–713.

    Article  Google Scholar 

  • Suzuki, G., H. Yamashita, S. Kai, T. Hayashibara, K. Suzuki, Y. Iehisa, W. Okada & T. Komori, 2013. Early uptake of specific symbionts enhances the post-settlement survival of Acropora corals. Marine Ecology Progress Series 494: 149–158.

    Article  Google Scholar 

  • Szmant, A. & N. J. Gassman, 1990. The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8: 217–224.

    Article  Google Scholar 

  • Tam, T. W. & P. O. Ang, 2008. Repeated physical disturbances and the stability of sub-tropical coral communities in Hong Kong, China. Aquatic Conservation 18: 1005–1024.

    Article  Google Scholar 

  • Thornhill, D. J., T. C. LaJeunesse, D. W. Kemp, W. K. Fitt & G. W. Schmidt, 2006a. Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Marine Biology 148: 711–722.

    Article  Google Scholar 

  • Thornhill, D. J., W. K. Fitt & G. W. Schmidt, 2006b. Highly stable symbioses among western Atlantic brooding corals. Coral Reefs 25: 515–519.

    Article  Google Scholar 

  • Trench, R. K., 1987. Dinoflagellates in non-parasitic symbioses. In Taylor, F. J. R. (ed.), The Biology of the Dinoflagellates. Wiley-Blackwell, Oxford: 530–570.

    Google Scholar 

  • Toller, W. W., R. Rowan & N. Knowlton, 2001. Zooxanthellae of the Montastrea annularis species complex: patterns of distribution of four taxa of Symbiodinium across different reefs and across depths. Biological Bulletin 201: 348–359.

    Article  CAS  Google Scholar 

  • van Oppen, M. J. H., 2001. In vitro establishment of symbiosis in Acropora millepora planulae. Coral Reefs 20: 200.

    Article  Google Scholar 

  • van Oppen, M. J. H., A. C. Baker, M. A. Coffroth & B. L. Willis, 2009. Bleaching resistance and the role of algal endosymbionts. In van Oppen, M. J. H. & J. M. Lough (eds), Coral Bleaching. Springer, Berlin: 83–102.

    Chapter  Google Scholar 

  • Wood-Charlson, E. M., L. L. Hollingsworth, D. A. Krupp & V. M. Weis, 2006. Lectin/glycan interactions play a role in recognition in a coral/dinoflagellate symbiosis. Cellular Microbiology 8: 1985–1993.

    Article  CAS  Google Scholar 

  • Yakovleva, I. M., A. H. Baird, H. H. Yamamoto, R. Bhagooli, M. Nonaka & M. Hidaka, 2009. Algal symbionts increase oxidative damage and death in coral larvae at high temperatures. Marine Ecology Progress Series 378: 105–112.

    Article  CAS  Google Scholar 

  • Yamashita, H., G. Suzuki, T. Hayashibara & K. Koike, 2013. Acropora recruits harbor “rare” Symbiodinium in the environmental pool. Coral Reefs 32: 355–366.

    Article  Google Scholar 

  • Yamashita, H., G. Suzuki, S. Kai, T. Hayashibara & K. Koike, 2014. Establishment of coral–algal symbiosis requires attraction and selection. PLoS ONE 9: e97003.

    Article  Google Scholar 

  • Yuyama, I. & T. Higuchi, 2014. Comparing the effects of symbiotic algae (Symbiodinium) clades C1 and D on early growth stages of Acropora tenuis. PLoS ONE 9: e98999.

    Article  Google Scholar 

Download references

Acknowledgements

This study was partly supported by Hong Kong Research Grant Council General Research Fund No. 14122215. Field assistance from Chan Ka Hei, Kwok Chun Kit, Lam Ka Yiu, Leung Yu Hin, Wong Kwan Ting, and Yeung Hon Bun is gratefully acknowledged. Coral egg bundles were collected and experiment carried out partly in Tung Ping Chau Marine Park with permission from the Agriculture, Fisheries and Conservation Department of the Hong Kong SAR Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Put Ang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling editor: Iacopo Bertocci

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, T.Y., Chui, A.P.Y. & Ang, P. Onset of symbiosis in planula larvae of scleractinian corals. Hydrobiologia 842, 113–126 (2019). https://doi.org/10.1007/s10750-019-04030-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04030-1

Keywords

Navigation