, Volume 814, Issue 1, pp 175–189 | Cite as

Nutrient availability reduced in older rural impoundments in coastal Bay of Fundy, Canada

  • Amanda L. Loder
  • Mark L. Mallory
  • Ian S. Spooner
  • Maxwell Turner
  • Nic R. McLellan
Primary Research Paper


The Cumberland Marsh Region (CMR), located at the head of the Bay of Fundy, is an important area for waterbird foraging, and wetland restoration and creation. Wetland managers in the CMR have observed that waterbird usage is high when wetlands (impoundments) are newly created, but can decline upon impoundment aging—a phenomenon called wetland senescence that is not well understood. We examined surface water chemistry among newly created and older impoundments in the CMR during the summer months (when waterbird breeding and staging are important), and hypothesized that nutrient availability would be reduced in older impoundments if nutrient loadings were primarily of internal origin. Despite ample rainwater and proximate agricultural sources, macro and micronutrient concentrations in impoundment surface water were significantly higher in newly created impoundments (< 1 year), and reduced in older impoundments (> 30 years) and impoundments 5–7 years in age. We suspect that impoundment creation has potential to generate high productivity levels, and older impoundments lack land-derived nutrients and may not sustain long-term nutrient availability when waterfowl brood foraging is important. More research is required to better understand wetland rehabilitation strategies that can help sustain nutrient availability, and inputs and pathways in impoundments.


Wetlands Impoundments Habitat Nutrients Phosphorus Nitrogen 



Financial support for this project was provided by the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chairs program, Ducks Unlimited Canada and Acadia University. Thanks to Andrew Kennedy and the Canadian Wildlife Service for logistic support and providing a research permit for field work. We thank the referees for helpful and insightful comments on an earlier version of this manuscript.

Supplementary material

10750_2018_3535_MOESM1_ESM.docx (283 kb)
Supplementary material 1 (DOCX 25 kb)


  1. Aldous, A., P. McCormick, C. Ferguson, S. Graham & C. Craft, 2005. Hydrologic regime controls soil phosphorus fluxes in restoration and undisturbed wetlands. Restoration Ecology 13: 341–347.CrossRefGoogle Scholar
  2. Anderson, C. J. & W. J. Mitsch, 2006. Sediment, carbon, and nutrient accumulation at two 10-year-old created riverine marshes. Wetlands 26: 779–792.CrossRefGoogle Scholar
  3. Beauchamp, S. T. & J. J. Kerekes, 1980. Comparative changes in water chemistry within impounded and natural freshwater marshes at the Tintamarre National Wildlife Area. Northeast Section Wildlife Society 37: 198–209.Google Scholar
  4. Blais, J. M., L. E. Kimpe, D. McMahon, B. E. Keatley, M. L. Mallory, M. S. V. Douglas & J. P. Smol, 2005. Arctic seabirds transport marine-derived contaminants. Science 309: 445.CrossRefPubMedGoogle Scholar
  5. Bleakney, J. S., 2004. Sods, Soils and Spades. McGill-Queen’s University Press, Kingston.Google Scholar
  6. Bortolotti, L. E., R. D. Vinebrooke & V. L. St. Louis, 2016. Prairie wetland communities recover at different rates following hydrological restoration. Freshwater Biology 61: 1874–1890.CrossRefGoogle Scholar
  7. Brandolin, P. G. & P. G. Blendinger, 2016. Effect of habitat and landscape structure on waterbird abundance in wetlands of central Argentina. Wetlands Ecology and Management 24: 93–105.CrossRefGoogle Scholar
  8. Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed. Springer, New York.Google Scholar
  9. Canadian Council of Ministers of the Environment, 2004. Phosphorus: Canadian guidance framework for the management of freshwater systems. Environment Canada. Retrieved from
  10. Carper, G. L. & R. W. Bachmann, 1984. Wind resuspension of sediments in a prairie lake. Canadian Journal of Fisheries and Aquatic Sciences 41: 1763–1767.CrossRefGoogle Scholar
  11. Cohen, A. S., 2003. Paleolimnology: The History and Evolution of lake Systems. Oxford University Press, New York.Google Scholar
  12. Cook, B. J. & F. R. Hauer, 2007. Effects of hydrologic connectivity on water chemistry, soils, and vegetation structure and function in an intermontane depressional wetland landscape. Wetlands 27: 719–738.CrossRefGoogle Scholar
  13. Corstanje, R. & K. R. Reddy, 2004. Response of biogeochemical indicators to a drawdown and subsequent reflood. Journal of Environmental Quality 33: 2357–2366.CrossRefPubMedGoogle Scholar
  14. Craft, C. B., 1996. Dynamics of nitrogen and phosphorus retention during wetland ecosystem succession. Wetlands Ecology and Management 4: 177–187.CrossRefGoogle Scholar
  15. Craft, C. B. & W. P. Casey, 2000. Sediment and nutrient accumulation in floodplain and depressional freshwater wetlands of Georgia, USA. Wetlands 20: 323–332.CrossRefGoogle Scholar
  16. Davies, S. R., C. D. Sayer, H. Greaves, G. M. Siriwardena & J. C. Axmacher, 2016. A new role for pond management in farmland bird conservation. Agriculture, Ecosystems & Environment 233: 179–191.CrossRefGoogle Scholar
  17. Debusk, W. F. & K. R. Reddy, 2005. Litter decomposition and nutrient dynamics in a phosphorus enriched everglades marsh. Biogeochemistry 75: 217–240.CrossRefGoogle Scholar
  18. Donar, C. M., R. K. Neely & E. F. Stoermer, 1996. Diatom succession in an urban reservoir system. Journal of Paleolimnology 15: 237–243.CrossRefGoogle Scholar
  19. Douglas, R. W. & B. Rippey, 2000. The random redistribution of sediment by wind in a lake. Limnology and Oceanography 45: 686–694.CrossRefGoogle Scholar
  20. Dunnington, D., H. White, I. Spooner, M. Mallory, C. White, N. O’Driscoll & N. McLellan, 2017. A paleolimnological archive of metal sequestration and release in the Cumberland Basin Marshes, Atlantic Canada. FACETS 2: 440–460.CrossRefGoogle Scholar
  21. Euliss, N. H., J. W. LaBaugh, L. H. Fredrickson, D. M. Mushet, M. K. Laubhan, G. A. Swanson, T. C. Winter, D. O. Rosenberry & R. D. Nelson, 2004. The wetland continuum: a conceptual framework for interpreting biological studies. Wetlands 24: 448–458.CrossRefGoogle Scholar
  22. Ganong, W. F., 1903. The vegetation of the Bay of Fundy salt and diked marshes: an ecological study. Botanical Gazette 36: 161–186.CrossRefGoogle Scholar
  23. Government of Canada, 1991. The federal policy on wetland conservation. Retrieved from
  24. Government of Nova Scotia, 2011. Nova Scotia wetland conservation policy. Retrieved from
  25. Green, A. J. & J. Elmberg, 2014. Ecosystem services provided by waterbirds. Biological Reviews 89: 105–122.CrossRefPubMedGoogle Scholar
  26. Hicklin, P. W., 1987. The migration of shorebirds in the Bay of Fundy. The Wilson Bulletin: 540–570.Google Scholar
  27. Horsman, T., 1994. Evaluation of factors affecting primary productivity at the Allain’s Creek waterfowl impoundment, Annapolis Royal, Nova Scotia (BSc.). Acadia University.Google Scholar
  28. Huang, G. & M. Isobe, 2012. Carrying capacity of wetlands for massive migratory waterfowl. Hydrobiologia 697: 5–14.CrossRefGoogle Scholar
  29. James, W. F., P. W. Sorge & P. J. Garrison, 2015. Managing internal phosphorus loading and vertical entrainment in a weakly stratified eutrophic lake. Lake and Reservoir Management 31: 292–305.CrossRefGoogle Scholar
  30. Kadlec, R. H. & K. R. Reddy, 2001. Temperature effects in treatment wetlands. Water Environment Research 73: 543–557.CrossRefPubMedGoogle Scholar
  31. Kolozsvary, M. B. & M. A. Holgerson, 2016. Creating temporary pools as wetland mitigation: how well do they function? Wetlands 36: 335–345.CrossRefGoogle Scholar
  32. Li, S., J. Lissner, I. A. Mendelssohn, H. Brix, B. Lorenzen, K. L. McKee & S. Miao, 2010. Nutrient and growth responses of cattail (Typha domingensis) to redox intensity and phosphate availability. Annals of Botany 105: 175–184.CrossRefPubMedGoogle Scholar
  33. Loder, A. L., M. L. Mallory, I. Spooner, C. McLauchlan, P. O. Englehardt, N. McLellan & C. White, 2016. Bioaccumulation of lead and arsenic in gastropods inhabiting salt marsh ponds in coastal Bay of Fundy, Canada. Water, Air, & Soil Pollution 227: 75.CrossRefGoogle Scholar
  34. Loder, A. L., M. L. Mallory, I. Spooner, N. McLellan, C. White & J. P. Smol, 2017. Do rural impoundments in coastal Bay of Fundy, Canada sustain adequate habitat for wildlife? Wetlands Ecology and Management. Scholar
  35. Macrae, M. L., Z. Zhang, M. Stone, J. S. Price, R. A. Bourbonniere & M. Leach, 2011. Subsurface mobilization of phosphorus in an agricultural riparian zone in response to flooding from an upstream reservoir. Canadian Water Resources Journal 36: 293–311.CrossRefGoogle Scholar
  36. Mallory, M. L., P. J. Blancher, P. J. Weatherhead & D. K. McNicol, 1994. Presence or absence of fish as a cue to macroinvertebrate abundance in boreal wetlands. In Kerekes, J. J. (ed.), Aquatic Birds in the Trophic Web of Lakes: Proceedings of a Symposium Held in Sackville, New Brunswick, Canada, in August 1991. Springer, Dordrecht: 345–351.Google Scholar
  37. Mallory, M. L., A. J. Fontaine, P. A. Smith, M. O. W. Robertson & H. G. Gilchrist, 2006. Water chemistry of ponds on Southampton Island, Nunavut, Canada: effects of habitat and ornithogenic inputs. Archiv für Hydrobiologie 166: 411–432.CrossRefGoogle Scholar
  38. Ma, Z., Y. Cai, B. Li & J. Chen, 2010. Managing wetland habitats for waterbirds: an international perspective. Wetlands 30: 15–27.CrossRefGoogle Scholar
  39. Mitsch, W. J. & R. F. Wilson, 1996. Improving the success of wetland creation and restoration with know-how, time, and self-design. Ecological Applications 6: 77.CrossRefGoogle Scholar
  40. Mitsch, W. J., X. Wu, R. W. Nairn, P. E. Weihe, N. Wang, R. Deal & C. E. Boucher, 1998. Creating and restoring wetlands. BioScience 48: 1019–1030.CrossRefGoogle Scholar
  41. Mitsch, W. J., L. Zhang, C. J. Anderson, A. E. Altor & M. E. Hernández, 2005. Creating riverine wetlands: ecological succession, nutrient retention, and pulsing effects. Ecological Engineering 25: 510–527.CrossRefGoogle Scholar
  42. New Brunswick Department of Natural Resources, 2002. New Brunswick wetlands conservation policy. Retrieved from
  43. Nürnberg, G. K. & B. D. LaZerte, 2016. Trophic state decrease after lanthanum-modified bentonite (Phoslock) application to a hyper-eutrophic polymictic urban lake frequented by Canada geese (Branta canadensis). Lake and Reservoir Management 32: 74–88.CrossRefGoogle Scholar
  44. Olde Venterink, H., M. J. Wassen, A. W. M. Verkroost & P. C. De Ruiter, 2003. Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology 84: 2191–2199.CrossRefGoogle Scholar
  45. Ostrofsky, M. L. & H. C. Duthie, 1980. Trophic upsurge and the relationship between phytoplankton biomass and productivity in Smallwood Reservoir, Canada. Canadian Journal of Botany 58: 1174–1180.CrossRefGoogle Scholar
  46. Paerl, H. W., H. Xu, N. S. Hall, K. L. Rossignol, A. R. Joyner, G. Zhu & B. Qin, 2015. Nutrient limitation dynamics examined on a multi-annual scale in Lake Taihu, China: implications for controlling eutrophication and harmful algal blooms. Journal of Freshwater Ecology 30: 5–24.CrossRefGoogle Scholar
  47. Palmer, M. A., E. S. Bernhardt, J. D. Allan, P. S. Lake, G. Alexander, S. Brooks, J. Carr, S. Clayton, C. N. Dahm, J. F. Shah, D. L. Galat, S. G. Loss, P. Goodwin, D. D. Hart, B. Hassett, R. Jenkinson, G. M. Kondolf, R. Lave, J. L. Meyer, T. K. O’Donnell, L. Pagano & E. Sudduth, 2005. Standards for ecologically successful river restoration. Journal of Applied Ecology 42: 208–217.CrossRefGoogle Scholar
  48. Pietro, K. C. & D. Ivanoff, 2015. Comparison of long-term phosphorus removal performance of two large-scale constructed wetlands in South Florida, U.S.A. Ecological Engineering 79: 143–157.CrossRefGoogle Scholar
  49. Portnoy, J. W. & A. E. Giblin, 1997. Biogeochemical effects of seawater restoration to diked salt marshes. Ecological Applications 7: 1054–1063.CrossRefGoogle Scholar
  50. Reddy, K. R. & W. H. Patrick, 1984. Nitrogen transformations and loss in flooded soils and sediments. Critical Reviews in Environmental Control 13: 273–309.CrossRefGoogle Scholar
  51. Reddy, K. R. & R. D. Delaune, 2008. Biogeochemistry of Wetlands. Taylor & Francis Group, Florida.CrossRefGoogle Scholar
  52. Reddy, K. R., S. Newman, T. Z. Osborne, J. R. White & H. C. Fitz, 2011. Phosphorous cycling in the greater Everglades ecosystem: legacy phosphorous implications for management and restoration. Critical Reviews in Environmental Science and Technology 41: 149–186.CrossRefGoogle Scholar
  53. Ryan, R. J., R. C. Boehner, A. J. Deal & J. H. Calder, 1990. Cumberland Basin geology map, Amherst, Springhill and Parrsboro. Digital version of Nova Scotia Department of Natural Resources Map ME 1990-12. Available at
  54. Scheuhammer, A. M., D. K. McNicol, M. L. Mallory & J. J. Kerekes, 1997. Relationships between lake chemistry and calcium and trace metal concentrations of aquatic invertebrates eaten by breeding insectivorous waterfowl. Environmental Pollution 96: 235–247.CrossRefPubMedGoogle Scholar
  55. Scott, D. B., J. Frail-Gauthier & P. J. Mudie, 2014. Coastal wetlands of the world: geology, ecology, distribution and applications. Cambridge University Press, New York.CrossRefGoogle Scholar
  56. Sharitz, R. R. & D. P. Batzer, 1999. An introduction to freshwater wetlands in North America and their invertebrates. In Batzer, D. P., R. B. Rader & S. A. Wissinger (eds), Invertebrates in Freshwater Wetlands of North America: Ecology and Management. Wiley, New York: 1–22.Google Scholar
  57. Shaw, J., C. L. Amos, D. A. Greenberg, C. T. O’Reilly, D. R. Parrott & E. Patton, 2010. Catastrophic tidal expansion in the Bay of Fundy, CanadaEarth Sciences Sector (ESS) Contribution 20090423. Canadian Journal of Earth Sciences 47: 1079–1091.CrossRefGoogle Scholar
  58. Smith, A., 1967. Waterfowl habitat, productivity and management at Missaquash Marsh, Nova Scotia (MSc.). Acadia University.Google Scholar
  59. Smit, J. T. & A. D. Steinman, 2015. Wetland sediment phosphorus flux in response to proposed hydrologic reconnection and warming. Wetlands 35: 655–665.CrossRefGoogle Scholar
  60. Staicer, C. A., B. Freedman, D. Srivastava, N. Dowd, J. Kilgar, J. Hayden, F. Payne & T. Pollock, 1994. Use of lakes by black duck broods in relation to biological, chemical, and physical features. Hydrobiologia 279: 185–199.CrossRefGoogle Scholar
  61. Stea, R. R., D. J. W. Piper, G. B. J. Fader & R. Boyd, 1998. Wisconsinan glacial and sea-level history of Maritime Canada and the adjacent continental shelf: a correlation of land and sea events. GSA Bulletin 110: 821–845.CrossRefGoogle Scholar
  62. Stevens, C. E., T. S. Gabor & A. W. Diamond, 2003. Use of restored small wetlands by breeding waterfowl in Prince Edward Island, Canada. Restoration Ecology 11: 3–12.CrossRefGoogle Scholar
  63. Thom, R. M., 2000. Adaptive management of coastal ecosystem restoration projects. Ecological Engineering 15: 365–372.CrossRefGoogle Scholar
  64. Whitman, W. R., 1974. The response of macro-invertebrates to experimental marsh management (PhD). University of Maine at Orono.Google Scholar
  65. Wynn, G., 1979. Late eighteenth-century agriculture on the Bay of Fundy marshlands. Acadiensis 8: 80–89.Google Scholar
  66. Zedler, J., 2000. Progress in wetland restoration ecology. Tree 15: 402–407.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Amanda L. Loder
    • 1
  • Mark L. Mallory
    • 1
  • Ian S. Spooner
    • 2
  • Maxwell Turner
    • 2
  • Nic R. McLellan
    • 3
  1. 1.Department of BiologyAcadia UniversityWolfvilleCanada
  2. 2.Department of Earth and Environmental ScienceAcadia UniversityWolfvilleCanada
  3. 3.Ducks Unlimited CanadaAmherstCanada

Personalised recommendations