Skip to main content

Advertisement

Log in

Exploring the effects of salinization on trophic diversity in freshwater ecosystems: a quantitative review

  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Salinization of freshwater ecosystems represents a potential threat to biodiversity, but the distribution of salinity tolerance among freshwater organisms and its functional consequences are understudied. In this study, we reviewed global patterns of salinity tolerance across a broad range of freshwater organisms. Specifically, we compared published data on LC50 (a metric of salinity tolerance) across climatic regions, taxa, and functional feeding groups (FFGs). We found that microinvertebrates were more sensitive to salinity than vertebrates and macroinvertebrates. Within aquatic insects, there was considerable variability in tolerance across FFGs. Specifically, scrapers, gatherers, and filterers were more sensitive on average than omnivores, shredders, and predators. Thus, we predict that increasing salinization can negatively impact trophic diversity and in turn cause overall changes in the structure and function of freshwater ecosystems. We also identified both historical exposure and taxonomic affinity as potential drivers of contemporary salinity tolerance across freshwater organisms. Finally, we found important gaps in our understanding of the potential impacts of salinization on freshwater biodiversity, particularly in regions expected to be affected by increased salinization due to climate change and secondary salinization. Understanding the differential vulnerability of freshwater taxa is critical to predicting the ecosystem impacts of salinization, and informing conservation and management decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adelman, I. R., S. J. Lloyd & G. D. Siesennop, 1976. Acute toxicity of sodium chloride, pentachlorophenol, guthion, and hexavalent chromium to fathead minnows (Pimephales auratus) and Goldfish (Carassius). Journal of the Fisheries Board of Canada 33: 203–208.

    Article  CAS  Google Scholar 

  • Allan, K., 2006. Biological Effects of Secondary Salinisation on freshwater macroinvertebrates in Tasmania: The acute salinity toxicity testing of seven macroinvertebrates. Master of Applied Science. James Cook University, Townsville.

    Google Scholar 

  • Altig, R., M. R. Whiles & C. L. Taylor, 2007. What do tadpoles really eat? Assessing the trophic status of an understudied and imperiled group of consumers in freshwater habitats. Freshwater Biology 52: 386–395.

    Article  Google Scholar 

  • Andersen, N. M., 1999. The evolution of marine insects: phylogenetic, ecological and geographical aspects of species diversity in marine water striders. Ecography 22: 98–111.

    Article  Google Scholar 

  • Arambasic, M. B., S. Bjelic & G. Subakov, 1995. Acute Toxicity of Heavy Metals (copper, lead, zinc), phenol and sodium on Allium cep L., Lepidium sativum L. and Daphnia magna. Comparative Investigations and Practical Applications 29: 497–503.

    CAS  Google Scholar 

  • Bacher, G. J., & J. S. Garnham, 1992. The effect of salinity to several freshwater aquatic species of southern Victoria. Freshwater Ecology Section, Flora and Fauna Division, Department of Conservation and Environment, EPA Report SRS 92/003 Melbourne.

  • Bailey, P., & K. James, 2000. Riverine and wetland salinity impacts—Assessment of R & D needs. Land and Water Resources Research and Development Corporation, Occassional Paper No. 25/99.

  • Birge, W. J., J. A. Black, A. G. Westerman, T. M. Short, S. B. Taylor, D. M. Bruser, & E. D. Wallingford, 1985. Recommendations on numerical values for regulating iron and chloride concentrations for the purpose of protecting warmwater species of aquatic life in the Commonwealth of Kentucky. Memorandum of Agreement No. 5429. Kentucky Natural Resources and Environment.

  • Blasius, B. J. & R. W. Merritt, 2002. Field and laboratory investigations on the effects of road salt (NaCl) on stream macroinvertebrate communities. Enviromental Pollution 120: 219–231.

    Article  CAS  Google Scholar 

  • Biswas, S. R. & A. U. Mallik, 2010. Disturbance effects on species diversity and functional diversity in riparian and upland plant communities. Ecology 91: 28–35.

    Article  PubMed  Google Scholar 

  • Boyero, L., R. G. Pearson, D. Dudgeon, M. A. S. Graça, M. O. Gessner, R. J. Albariño, V. Ferreira, C. M. Yule, A. J. Boulton, M. Arunachalam, M. Callisto, E. Chauvet, A. Ramírez, J. Chará, M. S. Moretti, J. F. Gonçalves, J. E. Helson, A. M. Chará-Serna, A. C. Encalada, J. N. Davies, S. Lamothe, A. Cornejo, A. O. Y. Li, L. M. Buria, V. D. Villanueva, M. C. Zúñiga & C. M. Pringle, 2011. Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology 92: 1839–1848.

    Article  PubMed  Google Scholar 

  • Bringolf, R. B., T. J. Kwak, W. G. Cope & M. S. Larimore, 2005. Salinity tolerance of flathead catfish: implications for dispersal of introduced populations. Transactions of the American Fisheries Society 134: 927–936.

    Article  Google Scholar 

  • Browne, S., 2005. The role of acute toxicity data for South African freshwater macroinvertebrates in the derivation of water quatlity guidelines for salinity. Rhodes University, Master of Science.

    Google Scholar 

  • Cañedo-Argüelles, M., B. J. Kefford, C. Piscart, N. Prat, R. B. Schäfer & C.-J. Schulz, 2013. Salinisation of rivers: an urgent ecological issue. Environmental pollution. Elsevier, New York: 157–167.

    Google Scholar 

  • Chadwick, M. A. & J. W. Feminella, 2001. Influence of salinity and temperature on the growth and production of a freshwater mayfly in the Lower Mobile River, Alabama. Limnology and Oceanography 46: 532–542.

    Article  Google Scholar 

  • Cheng, L., 2005. Marine Insects. Scripps Institution of Oceanography. University of California, La Jolla, Calif. 92093, USA.

  • Conti, L., A. Schmidt-Kloiber, G. Grenouillet & W. Graf, 2014. A trait-based approach to assess the vulnerability of European aquatic insects to climate change. Hydrobiologia 721: 297–315.

    Article  CAS  Google Scholar 

  • Cormier, S. M., G. W. Suter, L. Zheng & G. J. Pond, 2013. Assessing causation of the extirpation of stream macroinvertebrates by a mixture of ions. Environmental Toxicology and Chemistry 32: 277–287.

    Article  CAS  PubMed  Google Scholar 

  • Courchamp, F., B. D. Hoffmann, J. C. Russell, C. Leclerc & C. Bellard, 2014. Climate change, sea-level rise, and conservation: keeping island biodiversity afloat. Trends in Ecology & Evolution 29: 127–130.

    Article  Google Scholar 

  • Covich, A. P., M. A. Palmer & T. A. Crowl, 1999. The role of benthic invertebrate species in freshwater ecosystems zoobenthic species influence energy flows and nutrient cycling. BioScience 49: 119–127.

    Article  Google Scholar 

  • Cowgill, U. M. & D. P. Milazzo, 1991. The sensitivity of two cladocerans to water quality variables: alkalinity. Archives of Environmental Contamination and Toxicology 21: 224–232.

    Article  CAS  Google Scholar 

  • Cummins, K. W., 1973. Trophic Relations of Aquatic Insects. Annual Review of Entomology 18: 183–206.

    Article  Google Scholar 

  • Cummins, K. W., M. A. Wilzbach, D. M. Gates, J. B. Perry & W. B. Taliaferro, 1989. Shredders and Riparian Vegetation. BioScience 39: 24–30.

    Article  Google Scholar 

  • Damgaard, J., 2000. Phylogeny of sea skaters, Halobates Eschscholtz (Hemiptera, Gerridae), based on mtDNA sequence and morphology. Zoological Journal of the Linnean Society 130: 511–526.

    Article  Google Scholar 

  • Danks, H. V., 2002. Modification of adverse conditions by insects. Oikos 99: 10–24.

    Article  Google Scholar 

  • De León, L. F. & A. M. Castillo, 2015. Rhinella marina (Cane toad). Salinity tolerance. Herpetological Review 46: 237–238.

    Google Scholar 

  • De León, L. F. & O. R. Lopez, 2016. Biodiversity beyond trees: panama’s Canal provides limited conservation lessons for Nicaragua. Biodiversity and Conservation 25: 2821–2825.

    Article  Google Scholar 

  • Dickman, M. D. & M. B. Gochnauer, 1978. Impact of sodium chloride on the microbiota of a small stream. Environmental Pollution 17: 109–126.

    Article  CAS  Google Scholar 

  • Dobson, M., A. Magana, J. M. Mathooko & F. K. Ndegwa, 2002. Detritivores in Kenyan highland streams: more evidence for the paucity of shredders in the tropics? Freshwater Biology 47: 909–919.

    Article  Google Scholar 

  • Dowden, B. F. & H. J. Bennett, 1965. Toxicity of selected chemicals to certain animals. Journal (Water Pollution Control Federation) 37: 1308–1316.

    CAS  Google Scholar 

  • Dunlop, J. E., N. Horrigan, G. McGregor, B. J. Kefford, S. Choy & R. Prasad, 2007. Effect of spatial variation on salinity tolerance of macroinvertebrates in Eastern Australia and implications for ecosystem protection trigger values. Environmental Pollution 151: 1–10.

    Google Scholar 

  • Echols, B. S., R. J. Currie & D. S. Cherry, 2010. Preliminary results of laboratory toxicity tests with the mayfly, Isonychia bicolor (Ephemeroptera: Isonychiidae) for development as a standard test organism for evaluating streams in the Appalachian coalfields of Virginia and West Virginia. Environmental Monitoring and Assessment 169: 487–500.

    Article  CAS  PubMed  Google Scholar 

  • Forbes, A. T. & B. R. Allanson, 1970. Ecology of the Sundays River Part II. Osmoregulation in some Mayfly nymphs (Ephemeroptera: Baetidae). Hydrobiologia 36: 489–503.

    Article  Google Scholar 

  • Gardner, K. M. & T. V. Royer, 2010. Effect of road salt application on seasonal chloride concentrations and toxicity in south-central Indiana streams. Journal of Environmental Quality 39: 1036–1042.

    Article  CAS  PubMed  Google Scholar 

  • Goetsch, P. & C. G. Palmer, 1997. Environmental contamination and toxicology salinity tolerances of selected macroinvertebrates of the Sabie River, Kruger National Park, South Africa. Archives of Environmental Contamination and Toxicology 32: 32–41.

    Article  CAS  PubMed  Google Scholar 

  • Gooderham, J. & E. Tsyrlin, 2002. The waterbug book. CSIRO Publishing, Clayton.

    Google Scholar 

  • Gosh, A. K. & R. N. Pal, 1969. Toxicity of Four Therapeutic Compounds To Fry of Indian Major Carps. Fishery Technology 6: 120–123.

    Google Scholar 

  • Halse, S. A., R. J. Shiel & W. D. Williams, 1998. Aquatic invertebrates of Lake Gregory, northwestern Australia, in relation to salinity and ionic composition. Hydrobiologia 381: 15–29.

    Article  CAS  Google Scholar 

  • Hamilton, R. W., J. K. Buttner & R. G. Brunetti, 1975. Lethal levels of sodium chloride and potassium chloride for an Oligochaete, a Chironomid Midge, and a Caddisfly of Lake Michigan. Environmental Protection Agency 4: 1003–1006.

    CAS  Google Scholar 

  • Hargraves, N. N., 1975. The effects of Cadmium on Aspects of Osmotic and Ionic Regulation in Paratya tasmaniensis Riek (Atyidae: Crustacea). B.Sc. (Hons) Thesis, University of Tasmania.

  • Hart, B. T., P. Bailey, R. Edwards, K. Hortle, K. James, A. McMahon, C. Meredith & K. Swadling, 1990. Effects of salinity on river, stream and wetland ecosystems in Victoria, Australia. Water Research 24: 1103–1117.

    Article  CAS  Google Scholar 

  • Hart, B. T., P. Bailey, R. Edwards, K. Hortle, K. James, A. McMahon, C. Meredith & K. Swadling, 1991. A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia 210: 105–144.

    Article  Google Scholar 

  • Hassall, C. & D. J. Thompson, 2008. The effects of environmental warming on Odonata: a review. International Journal of Odonatology 11: 131–153.

    Article  Google Scholar 

  • Hassell, K. L., B. J. Kefford & D. Nugegoda, 2006. Sub-lethal and chronic salinity tolerances of three freshwater insects: Cloeon sp. and Centroptilum sp. (Ephemeroptera: Baetidae) and Chironomus sp. (Diptera: Chironomidae). The Journal of Experimental Biology 209: 4024–4032.

    Article  PubMed  Google Scholar 

  • Helson, J. E. & D. D. Williams, 2013. Development of a macroinvertebrate multimetric index for the assessment of low-land streams in the neotropics. Ecological Indicators. Elsevier, New York: 167–178.

    Google Scholar 

  • Herbert, E. R., P. Boon, A. J. Burgin, S. C. Neubauer, R. B. Franklin, M. Ardón, K. N. Hopfensperger, L. P. M. Lamers & P. Gell, 2015. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6: art206.

    Article  Google Scholar 

  • Hinton, M. J. & A. G. Eversole, 1979. Toxicity of ten chemicals commonly used in aquaculture to the black eel stage of the american eel. Proceedings of the World Mariculture Society 10: 554–560.

    Article  Google Scholar 

  • Horrigan, N., S. Choy, J. Marshall & F. Recknagel, 2005. Response of stream macroinvertebrates to changes in salinity and the development of a salinity index. Marine and Freshwater Research 56: 825–833.

    Article  CAS  Google Scholar 

  • Horrigan, N., J. E. Dunlop, B. J. Kefford & F. Zavahir, 2007. Acute toxicity largely reflects the salinity sensitivity of stream macroinvertebrates derived using field distributions. Marine and Freshwater Research 58: 178–186.

    Article  CAS  Google Scholar 

  • IPCC, 2000. IPCC Special Report Emissions Scenarios. Intergovernmental Panel on Climate Change.

  • IPCC, 2007. Cambio climático 2007: Informe de síntesis. Informe del Grupo Intergubernamental de Expertos sobre el Cambio Climático. Intergovernmental Panel on Climate Change.

  • James, K., B. Cant & T. Ryan, 2003. Responses of freshwater biota to rising salinity levels and implications for saline water management: a review. Australian Journal of Botany 51: 703–713.

    Article  CAS  Google Scholar 

  • Jeppesen, E., M. Søndergaard, A. R. Pedersen, K. Jürgens, A. Strzelczak, T. L. Lauridsen & L. S. Johansson, 2007. Salinity induced regime shift in shallow brackish lagoons. Ecosystems 10: 47–57.

    Article  CAS  Google Scholar 

  • Johnsson, J. & W. C. Clarke, 1988. Development of seawater adaptation in juvenile steelhead trout (Salmo gairdneri) and domesticated rainbow trout (Salmo gairdneri) – effects of size, temperature and photoperiod. Aquaculture 71: 247–263.

    Article  Google Scholar 

  • Kang, S. R. & S. L. King, 2012. Influence of salinity and prey presence on the survival of aquatic macroinvertebrates of a freshwater marsh. Aquatic Ecology 46: 411–420.

    Article  Google Scholar 

  • Karraker, N. E., 2007. Are embryonic and larval green frogs (Rana clamitans) insensitive to road deicing salt? Herpetological Conservation and Biology 2: 35–41.

    Google Scholar 

  • Kaushal, S. S., P. M. Groffman, G. E. Likens, K. T. Belt, W. P. Stack, V. R. Kelly, L. E. Band & G. T. Fisher, 2005. Increased salinization of fresh water in the northeastern United States. Proceedings of the National academy of Sciences of the United States of America 102: 13517–13520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kay, W. R., S. A. Halse, M. D. Scanlon & M. J. Smith, 2001. Distribution and environmental tolerances of aquatic macroinvertebrate families in the agricultural zone of southwestern Australia. Journal of the North America Benthological Society 20: 182–199.

    Article  Google Scholar 

  • Kefford, B. J., P. J. Papas & D. Nugegoda, 2003. Relative salinity tolerance of macroinvertebrates from the Barwon River, Victoria, Australia. Marine & Freshwater Research 54: 755–765.

    Article  CAS  Google Scholar 

  • Kefford, B. J., A. Dalton, C. G. Palmer & D. Nugegoda, 2004a. The salinity tolerance of eggs and hatchlings of selected aquatic macroinvertebrates in south-east Australia and South Africa. Hydrobiologia 517: 179–192.

    Article  Google Scholar 

  • Kefford, B. J., C. G. Palmer, L. Pakhomova & D. Nugegoda, 2004b. Comparing test systems to measure the salinity tolerance of freshwater invertebrates. Water SA 30: 499–506.

    Article  Google Scholar 

  • Kefford, B. J., P. J. Papas, L. Metzeling & D. Nugegoda, 2004c. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity? Environmental Pollution 129: 355–362.

    Article  CAS  PubMed  Google Scholar 

  • Kefford, B. J., C. G. Palmer & D. Nugegoda, 2005. Relative salinity tolerance of freshwater macroinvertebrates from the south-east Eastern Cape, South Africa compared with the Barwon Catchment, Victoria. Australia. Marine and Freshwater Research 56: 163.

    Article  CAS  Google Scholar 

  • Kefford, B. J., D. Nugegoda, L. Metzeling & E. J. Fields, 2006a. Validating species sensitivity distributions using salinity tolerance of riverine macroinvertebrates in the southern Murray-Darling Basin (Victoria, Australia). Canadian Journal of Fisheries and Aquatic Sciences 63: 1865–1877.

    Article  CAS  Google Scholar 

  • Kefford, B. J., D. Nugegoda, L. Zalizniak, E. J. Fields & K. L. Hassell, 2006b. The salinity tolerance of freshwater macroinvertebrate eggs and hatchlings in comparison to their older life-stages: a diversity of responses. Aquatic Ecology 41: 335–348.

    Article  CAS  Google Scholar 

  • Kefford, B. J., L. Zalizniak & D. Nugegoda, 2006c. Growth of the damselfly Ischnura heterosticta is better in saline water than freshwater. Environmental Pollution 141: 409–419.

    Article  CAS  PubMed  Google Scholar 

  • Kefford, B. J., E. J. Fields, C. Clay & D. Nugegoda, 2007. The salinity tolerance of riverine microinvertebrates from the southern Murray-Darling Basin. Marine and Freshwater Research 58: 1019–1031.

    Article  Google Scholar 

  • Kefford, B. J., R. Marchant, R. B. Schäfer, L. Metzeling, J. E. Dunlop, S. C. Choy & P. Goonan, 2011. The definition of species richness used by species sensitivity distributions approximates observed effects of salinity on stream macroinvertebrates. Environmental Pollution 159: 302–310.

    Article  CAS  PubMed  Google Scholar 

  • Kefford, B. J., G. L. Hickey, A. Gasith, E. Ben-David, J. E. Dunlop, C. G. Palmer, K. Allan, S. C. Choy & C. Piscart, 2012a. Global scale variation in the salinity sensitivity of riverine macroinvertebrates: eastern Australia, France. Israel and South Africa, PloS ONE: 7.

    Google Scholar 

  • Kefford, B. J., R. B. Schäfer & L. Metzeling, 2012b. Risk assessment of salinity and turbidity in Victoria (Australia) to stream insects’ community structure does not always protect functional traits. Science of the Total Environment 415: 61–68.

    Article  CAS  PubMed  Google Scholar 

  • Kefford, B. J., D. Buchwalter, M. Cañedo-Argüelles, J. Davis, R. Duncan, A. Hoffmann & R. Thompson, 2016. Salinized rivers: degraded systems or new habitats for salt-tolerant faunas? Biology Letters 12: 1–7.

    Article  Google Scholar 

  • Kostecki, P. T., 1984. The effect of osmotic and ion-osmotic stresses on the blood and urine composition and urine flow of rainbow trout (Salmo gairdneri). Comparative Biochemistry and Physiology 79: 215–221.

    Article  CAS  PubMed  Google Scholar 

  • Kottek, M., J. Grieser, C. Beck, B. Rudolf & F. Rubel, 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15: 259–263.

    Article  Google Scholar 

  • Kozak, G. M., R. S. Brennan, E. L. Berdan, R. C. Fuller & A. Whitehead, 2013. Functional and population genomic divergence within and between two species of killifish adapted to different osmotic niches. Evolution 68: 63–80.

    Article  PubMed  CAS  Google Scholar 

  • Krivosheina, M., 2004. Krivosheina, M.G., Morphological and ecological adaptation of dipteran larvae (Insecta, Diptera) to the stress conditions, Doctoral Sci. (Biol.) Dissertation, Moscow.

  • Kszos, L. A., J. D. Winter & T. A. Storch, 1990. Toxicity of chautauqua lake bridge runoff to young-of-the-year sunfish (Lepomis macrochirus). Bulletin of Environmental Contamination and Toxicology 45: 923–930.

    Article  CAS  PubMed  Google Scholar 

  • Kunz, J. L., J. M. Conley, D. B. Buchwalter, T. J. Norberg-King, N. E. Kemble, N. Wang & C. G. Ingersoll, 2013. Use of reconstituted waters to evaluate effects of elevated major ions associated with mountaintop coal mining on freshwater invertebrates. Environmental Toxicology and Chemistry 32: 2826–2835.

    Article  CAS  PubMed  Google Scholar 

  • Lasier, P. J., P. V. Winger & R. E. Reinert, 1997. Toxicity of alkalinity to Hyalella azteca. Bulletin of Environmental Contamination and Toxicology 59: 807–814.

    Article  CAS  PubMed  Google Scholar 

  • Leigh, C., R. Stubbington, F. Sheldon & A. J. Boulton, 2013. Hyporheic invertebrates as bioindicators of ecological health in temporary rivers: a meta-analysis. Ecological Indicators 32: 62–73.

    Article  Google Scholar 

  • Lin, Y. M., C. N. Chen & T. H. Lee, 2003. The expression of gill Na, K-ATPase in milkfish, Chanos chanos, acclimated to seawater, brackish water and fresh water. Comparative Biochemistry and Physiology Part A 135: 489–497.

    Article  CAS  Google Scholar 

  • Martínez-Jerónimo, F. & L. Martínez-Jerónimo, 2007. Chronic effect of NaCl salinity on a freshwater strain of Daphnia magna Straus (Crustacea: Cladocera): a demographic study. Ecotoxicology and Environmental Safety 67: 411–416.

    Article  PubMed  CAS  Google Scholar 

  • Merritt, R., J. R. Wallace, M. J. Higgins, M. K. Alexander, M. B. Berg, W. T. Morgan, K. W. Cummins & B. Vandeneeden, 1996. Procedures for the functional analysis of invertebrate communities of the Kissimmee River-floodplain ecosystem. The Florida Academy of Sciences 59: 215–274.

    Google Scholar 

  • Merritt, R. W., K. W. Cummins, M. B. Berg, J. A. Novak, M. J. Higgins, K. J. Wessell & J. L. Lessard, 2002. Development and application of a macroinvertebrate functional-group approach in the bioassessment of remnant river oxbows in southwest Florida. Journal of the North American Benthological Society 21: 290–310.

    Article  Google Scholar 

  • Merritt, R. W., K. W. Cummins & M. B. Berg, 2008. An Introduction to Aquatic Insects of North America, 4th ed. Kendall/Hunt Publishing Company, Dubuque.

    Google Scholar 

  • Meyer, A. & J. A. Huete-Pérez, 2013. Nicaragua canal could wreak environmental ruin. Nature 506: 2013–2015.

    Google Scholar 

  • Myers, J. J. & C. C. Kohler, 2000. Acute responses to salinity for sunshine bass and palmetto bass. North American Journal of Aquaculture 62: 195–202.

    Article  Google Scholar 

  • Newman, M. C. & M. S. Aplin, 1992. Enhancing toxicity data interpretation and prediction of ecological risk with survival time modeling: an illustration using sodium chloride toxicity to mosquitofish (Gambusia holbrooki). Aquatic Toxicology 23: 85–96.

    Article  CAS  Google Scholar 

  • Nielsen, D. L. & T. J. Hillman, 2000. Ecological effects of dryland salinity on aquatic ecosystems. CRC for Freshwater Ecology, Murray Darling Freshwater Research Centre, Albury.

    Google Scholar 

  • Nielsen, D. L., M. A. Brock, G. N. Rees & D. S. Baldwin, 2003. Effects of increasing salinity on freshwater ecosystems in Australia. Australian Journal of Botany 51: 655–665.

    Article  Google Scholar 

  • Noble, R. A. A., I. G. Cowx, D. Goffaux & P. Kestemont, 2007. Assessing the health of European rivers using functional ecological guilds of fish communities: standardising species classification and approaches to metric selection. Fisheries Management and Ecology 14: 381–392.

    Article  Google Scholar 

  • O’Brien, G. C., 2003. An ecotoxicological investigation into the ecological integrity of a segment of the Elands River, Mpumalanga, South Africa. Magister Scientiae in Zoology. Rand Afrikaans University, Johannesburg.

    Google Scholar 

  • Padhye, A. D. & H. V. Ghate, 1992. Sodium chloride and potassium chloride tolerance of different stages of the frog, Microhyla ornata. Herpetological Journal 2: 18–23.

    Google Scholar 

  • Palmer, C. G., & P. A. Sherman, 2000. Application of an Artificial Stream system to Investigate the Water Quality Tolerances of Indigenous, South African, riverine Macroinvertebrates. WRC Report No.686/1/00.

  • Palmer, C. G., B. Maart, A. R. Palmer & J. H. O’Keeffe, 1996. An assessment of macroinvertebrate functional feeding groups as water quality indicators in the Buffalo River, eastern Cape Province, South Africa. Hydrobiologia 318: 153–164.

    Article  Google Scholar 

  • Palmer, C. G., W. J. Muller, A. K. Gordon, P. A. Scherman, H. D. Davies-Coleman, L. Pakhomova & E. De Kock, 2004. The development of a toxicity database using freshwater macroinvertebrates, and its application to the protection of South African water resources. South African Journal of Science 100: 643–650.

    CAS  Google Scholar 

  • Paradise, T. A., 2009. The sublethal salinity tolerance of selected freshwater macroinvertebrate species. Master of Applied Science. Biotechnology and Environmental Biology. RMIT University, Vietnam.

    Google Scholar 

  • Patrick, R., J. J. Cairns & A. Scheier, 1968. The Relative sensitivity of diatoms, snails, and fish to twenty common constituents of industrial wastes. The Progressive Fish-Culturist 30(3): 173–174.

    Article  Google Scholar 

  • Peel, M. C., B. L. Finlayson & T. A. McMahon, 2006. Updated map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11: 1633–1644.

    Article  Google Scholar 

  • Pinder, A. M., S. A. Halse, J. M. McRae & R. J. Shiel, 2005. Occurrence of aquatic invertebrates of the wheatbelt region of Western Australia in relation to salinity. Hydrobiologia 543: 1–24.

    Article  Google Scholar 

  • Piscart, C., J. C. Moreteau & J. N. Beisel, 2005. Biodiversity and structure of macroinvertebrate communities along a small permanent salinity gradient (Meurthe River, France). Hydrobiologia 551: 227–236.

    Article  Google Scholar 

  • Piscart, C., P. Usseglio-Polatera, J.-C. Moreteau & J.-N. Beisel, 2006. The role of salinity in the selection of biological traits of freshwater invertebrates. Archiv für Hydrobiologie 166: 185–198.

    Article  CAS  Google Scholar 

  • Piscart, C., B. J. Kefford & J. N. Beisel, 2011. Are salinity tolerances of non-native macroinvertebrates in France an indicator of potential for their translocation in a new area? Limnologica Elsevier GmbH. 41: 107–112.

    Article  Google Scholar 

  • Pond, G. J., 2010. Patterns of Ephemeroptera taxa loss in Appalachian headwater streams (Kentucky, USA). Hydrobiologia 641: 185–201.

    Article  Google Scholar 

  • Pratt, J. R. & J. J. Cairns, 1985. Functional groups in the protozoa: roles in differing ecosystems. The Journal of Protozoology 32: 415–423.

    Article  Google Scholar 

  • R Development Core, 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Rahmstorf, S., 2007. A semi-empirical approach to projecting future sea-level rise. Science 315: 368–370.

    Article  CAS  PubMed  Google Scholar 

  • Ramírez, A. & P. E. Gutiérrez-Fonseca, 2014. Functional feeding groups of aquatic insect families in Latin America: a critical analysis and review of existing literature. Revista de Biologia Tropical 62: 155–167.

    Article  PubMed  Google Scholar 

  • Rengasamy, P., 2006. World salinization with emphasis on Australia. Journal of Experimental Botany 57: 1017–1023.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, D. M. & Vincent H. Resh, 1993. Freshwater Biomonitoring and benthic Macroinvertebrates. Chapman and Hall, New York: 1993.

    Google Scholar 

  • Rutherford, J. C., & B. J. Kefford, 2005. Effects of salinity on stream ecosystems: improving models for macroinvertebrates. CSIRO Land and Water Technical Report 22/05.

  • Ryder, D., & S. Vink, 2007. Managing regulated flows and contaminant cycles in floofplain rivers. Salt, Nutrient, Sediment and Interactions: Findings from the National river Contaminants Program. Land & Water Australia.

  • Sanzo, D. & S. J. Hecnar, 2006. Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica). Environmental Pollution 140: 247–256.

    Article  CAS  PubMed  Google Scholar 

  • SEWRPC Community Assistance Planning Report, 2001. Acute Toxicity of Sodium Chloride to Freshwater Aquatic organisms. SEWRPC Community Assistance Planning Report No. 316.

  • Simpson, P. E., M. R. González, C. M. Hart & S. H. Hurlbert, 1998. Salinity and fish effects on Salton Sea microsystems: water chemistry and nutrient cycling. Hydrobiologia 381: 105–128.

    Article  Google Scholar 

  • Slaughter, A. R., 2005. The refinement of protective salinity guidelines for South African freshwater resources. Distribution. Master of Science at Rhodes University

  • Stoks, R., A. N. Geerts & L. De Meester, 2013. Evolutionary and plastic responses of freshwater invertebrates to climate change: realized patterns and future potential. Evolutionary Applications 7: 42–55.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutcliffe, D. W., 1961. Studies on salt and water balance in caddis larvae (Trichoptera): I. Osmotic and ionic regulation of body fluids in Limnephilus affinis Curtis. Journal of Experimental Biology 38: 501–519.

    CAS  Google Scholar 

  • Sutcliffe, D. W., 1974. Sodium regulation and adaptation to fresh water in the isopod genus Asellus. The Journal of Experimental Biology 61: 719–736.

    CAS  PubMed  Google Scholar 

  • Szöcs, E., E. Coring, J. Bäthe & R. B. Schäfer, 2014. Effects of anthropogenic salinization on biological traits and community composition of stream macroinvertebrates. Science of the Total Environment 468–469: 943–949.

    Article  PubMed  CAS  Google Scholar 

  • Thornton, K. W. & J. R. Sauer, 1972. Physiological Effects of NaCl on Chironomus attenuatus (Diptera: Chironomidae). Oklahoma State University, Stillwater: 872–875.

    Google Scholar 

  • Thorp, J. H. & D. C. Rogers, 2011. Field Guide to Freshwater Invertebrates of North America. Academic Press, Massachusetts.

    Google Scholar 

  • Timms, B. V., 1998. A study of Lake Wyara, an episodically filled saline lake in southwest Queensland, Australia. International Journal of Salt Lake Research 7: 113–132.

    Google Scholar 

  • Tomanova, S., E. Goitia & J. Helešic, 2006. Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia 556: 251–264.

    Article  Google Scholar 

  • Trama, F. B., 1954. The Acute Toxicity of Some Common Salts of Sodium, Potassium and Calcium to the Common Bluegill (Lepomis macrochirus Rafinesque). Proceedings of the Academy of Natural Sciences of Philadelphia 106: 185–205.

    CAS  Google Scholar 

  • Wallace, J. B. & R. W. Merritt, 1980. Filter-Feeding Ecology of Aquatic Insects. Annual Review of Entomology 25: 103–132.

    Article  Google Scholar 

  • Wallace, J. B. & J. R. Webster, 1996. The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology 41: 115–139.

    Article  CAS  PubMed  Google Scholar 

  • Wallen, I. E., W. C. Greer & R. Lasater, 1957. Pollution to “Gambusia Affinis” of certain pure chemicals in turbid waters. Sewage and Industrial Wastes 29: 695–711.

    CAS  Google Scholar 

  • Walsh, C. J., 1994. Ecology of Epifaunal Caridean Shrimps in the Hopkins River Estuary, and the role of Estuaries in the life history of the Atyid Paratya Australiensis Kemp, 1917 in South-Eastern Australia. Deakin University, Burwood.

    Google Scholar 

  • Waterkeyn, A., P. Grillas, B. Vanschoenwinkel & L. Brendonck, 2008. Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshwater Biology 53: 1808–1822.

    Article  CAS  Google Scholar 

  • Wichard, W., 1975. Osmoregulatory adaptations of aquatic insects in the lake district “Neudiedlersee”. Nachrichtenblatt der Bayerischen Entomologen 24: 81–87.

    Google Scholar 

  • Wigglesworth, V. B., 1933. The adaptation of mosquito larvae to salt water. Journal of Experimental Biology 32: 27–37.

    Google Scholar 

  • Williams, W. D., 1984. Salinity as a Water Quality and Determinant in Australia. Australian Water Research Council Research. Report No. 80/121.

  • Williams, W. D., 2001. Anthropogenic salinisation of inland waters. Hydrobiologia 466: 329–337.

    Article  Google Scholar 

  • Williams, W. D. & J. E. Sherwood, 1994. Definition and measurement of salinity in salt lakes. International Journal of Salt Lake Research 3: 53–63.

    Article  Google Scholar 

  • Williams, W. D., R. G. Taaffe & A. J. Boulton, 1991. Longitudinal distribution of macroinvertebrates in two rivers subject to salinization. Hydrobiologia 210: 151–160.

    Article  Google Scholar 

  • Williams, W. D., P. De Deckker & R. J. Shiel, 1998. The limnology of Lake Torrens, an episodic salt lake of central Australia, with particular reference to unique events in 1989. Hydrobiologia 384: 101–110.

    Article  Google Scholar 

  • Winterbourn, M. J. & N. H. Anderson, 1980. The life history of Philanisus plebeius Walker (Trichoptera: Chathamiidae), a caddisfly whose eggs were found in a starfish. Ecological Entomology 5: 293–304.

    Article  Google Scholar 

  • Wisconsin State Laboratory of Hygiene, 1998. Unpublished Data on Chloride Toxicity of Aquatic Species. From A. Letts (Technical Manager, Morton International, Inc., Chicago, Illinois) to M.S. Evans (National Hydrology Research Institute, Environment Canada).

  • Wurtsbaugh, W. A., 1992. Food-web modification by an invertebrate predator in the Great Salt Lake (USA). Oecologia 89: 168–175.

    Article  PubMed  Google Scholar 

  • Zalizniak, L., B. Kefford & D. Nugegoda, 2006. Is salinity the same? I. The effect of ionic compositions on the salinity tolerance of five species of freshwater invertebrates. Marine and Freshwater Research 57: 75–82.

    Article  CAS  Google Scholar 

  • Zamora-Muñoz, C. & B. W. Svensson, 1996. Survival of caddis larvae in relation to their case material in a group of temporary and permanent. Freshwater Biology 36: 23–31.

    Article  Google Scholar 

  • Zinchenko, T. D. & L. V. Golovatyuk, 2013. Salinity tolerance of macroinvertebrates in stream waters (review). Arid Ecosystems 3: 113–121.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT, Panamá) in the form of a doctoral fellowship to AMC and a research grant (No. ITE12-002) to LFD. CKG was supported by a National Science Foundation grant (IOS-1457383). Additional support was provided by Instituto para la Formación y Aprovechamiento de los Recursos Humanos in the form of a doctoral fellowship to AMC, and by Sistema Nacional de Investigación (SNI, Panamá) to DMTS and LFD. DMTS was also supported by a postdoctoral fellowships from the Fonds Recherche Nature et Technologies Quebec (FQRNT). Finally, the authors thank two anonymous reviewers and editor Eric R. Larson for their comments and suggestions that helped improve an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis F. De León.

Additional information

Handling editor: Eric Larson

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo, A.M., Sharpe, D.M.T., Ghalambor, C.K. et al. Exploring the effects of salinization on trophic diversity in freshwater ecosystems: a quantitative review. Hydrobiologia 807, 1–17 (2018). https://doi.org/10.1007/s10750-017-3403-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3403-0

Keywords

Navigation