Skip to main content
Log in

Phytoplankton assemblages in a complex system of interconnected reservoirs: the role of water transport in dispersal

  • TRENDS IN AQUATIC ECOLOGY II
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Phytoplankton in a complex network of reservoirs for drinking water supply was sampled in the dry and flood seasons to understand the role of dispersal through hydrochory and of environmental filters in determining the phytoplankton abundance and composition. The main assumptions tested in the present study are that (i) phytoplankton structure in these waterbodies is strongly dependent on the transportation with the river waters flowing through them and (ii) the importance of this stochastic transportation is decreasing as the connectivity with the river decreases allowing environmental filters to shape phytoplankton structure. The multivariate analysis showed that although phytoplankton was inoculated largely by Pearl River water inputs and inflow among the system, the hydraulic architecture of the reservoir network shaped and modulated the composition and abundance of phytoplankton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ansari, A. A., S. S. Gill, G. R. Lanza & W. Rast (eds), 2011. Eutrophication: Causes, Consequences and Control. Springer, Dordrecht.

    Google Scholar 

  • A.P.H.A., 2012. Standard Methods for the Examination of Water and Wastewater, 22nd edn. American Water Works Association and Water Pollution Control Federation, Washington, DC.

    Google Scholar 

  • Barone, R. & L. Naselli-Flores, 2003. Distribution and seasonal dynamics of Cryptomonads in Sicilian water bodies. Hydrobiologia 502: 325–329.

    Article  Google Scholar 

  • Cole, G. A., 1994. Textbook of Limnology, 4th edn. Waveland Press, Long Grove.

    Google Scholar 

  • Devercelli, M., P. Scarabotti, G. Mayora, B. Schneider & F. Giri, 2016. Unravelling the role of determinism and stochasticity in structuring the phytoplankton metacommunity of the Paraná River floodplain. Hydrobiologia 764: 139–156.

    Article  CAS  Google Scholar 

  • Estrada, M. & E. Berdalet, 1997. Phytoplankton in a turbulent world. Scientia Marina 61: 125–140.

    Google Scholar 

  • Fontaneto, D. & J. Hortal, 2012. Microbial biogeography: is everything small everywhere? In Ogilvie, L. A. & P. R. Hirsch (eds), Microbial Ecological Theory: Current Perspectives. Caister Academic Press, Norfolk: 87–98.

    Google Scholar 

  • Guiry, M. D. & G. M. Guiry, 2016. AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 21 December 2016.

  • Han, B. & Z. Liu (eds), 2012. Tropical and Sub-Tropical Reservoir Limnology in China. Theory and Practice. Springer, Dordrecht.

    Google Scholar 

  • Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Hu, R., B. P. Han & L. Naselli-Flores, 2013. Comparing biological classifications of freshwater phytoplankton a case study from South China. Hydrobiologia 701: 219-233.

    Article  Google Scholar 

  • Hu, R., Q. H. Li, B. P. Han, L. Naselli-Flores, J. Padisák & N. Salmaso, 2016. Tracking management-related water quality alterations by phytoplankton assemblages in a tropical reservoir. Hydrobiologia 763: 109–124.

    Article  CAS  Google Scholar 

  • Hubbell, S. P., 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Incagnone, G., F. Marrone, L. Robba, R. Barone & L. Naselli-Flores, 2015. How do freshwater organisms cross the ‘‘dry ocean’’? A review on passive dispersal and colonization processes with a special focus on temporary ponds. Hydrobiologia 750: 103–123.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology, 2nd edn. Elsevier, Amsterdam.

    Google Scholar 

  • Lei, L., L. Peng, X. Huang & B. P. Han, 2014 Occurrence and dominance of Cylindrospermopsis raciborskii and dissolved cylindrospermopsin in urban reservoirs used for drinking water supply, South China. Environmental Monitoring and Assessment 186: 3079–3090.

    Article  CAS  PubMed  Google Scholar 

  • Lin, S. J., L. J. He, P. S. Huang & B. P. Han, 2005. Comparison and improvement on the extraction method for chlorophyll a in phytoplankton. Chinese Journal of Ecological Science 24: 9–11.

    Google Scholar 

  • Liu, J., J. Soininen, B. P. Han & S. A. J. Declerck, 2013. Effects of connectivity, dispersal directionality and functional traits on the metacommunity structure of river benthic diatoms. Journal of Biogeography 40: 2238–2248.

    Article  Google Scholar 

  • Logue, J. B., N. Mouquet, H. Peter & H. Hillebrand, 2011. Empirical approaches to metacommunities: a review and comparison with theory. Trends in Ecology & Evolution 26: 482–491.

    Article  Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.

    Article  CAS  Google Scholar 

  • Lund, J. W. G., C. Kipling & D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimation by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Ma, X., 2012. The integration of the city-region of the Pearl River Delta. Asia Pacific Viewpoint 53: 97–104.

    Article  Google Scholar 

  • Naselli-Flores, L., 1999. Limnological aspects of Sicilian reservoirs: a comparative ecosystemic approach. In Tundisi, J. C. & M. Straškraba (eds), Theoretical Reservoir Ecology and Its Applications. Backhuys Publishers, Leiden: 283–311

    Google Scholar 

  • Naselli-Flores, L., 2011. Mediterranean climate and eutrophication of reservoirs: limnological skills to improve management. In Ansari, A. A., S. S. Gill, G. R. Lanza & W. Rast (eds), Eutrophication: causes, consequences and control. Springer, Dordrecht: 131–142.

    Google Scholar 

  • Naselli-Flores, L., 2014. Morphological analysis of phytoplankton as a tool to assess ecological state of aquatic ecosystems. The case of Lake Arancio, Sicily, Italy. Inland Waters 4: 15–26.

    Article  Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2005. Water-level fluctuations in Mediterranean reservoirs: setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia 548: 85–99.

    Article  Google Scholar 

  • Naselli-Flores, L. & J. Padisák, 2016. Blowing in the wind: how many roads can a phytoplanktont walk down? A synthesis on phytoplankton biogeography and spatial patterns. Hydrobiologia 764: 303–313.

    Article  Google Scholar 

  • Naselli-Flores, L., R. Termine, & R. Barone, 2016. Phytoplankton colonization patterns. Is species richness depending on distance among freshwaters and on their connectivity? Hydrobiologia 764: 103–113.

    Article  CAS  Google Scholar 

  • Padial, A. A., F. Ceschin, S. A. J. Declerck, L. De Meester, C. C. Bonecker, F. A. Lansac-Tôha, L. Rodrigues, L. C. Rodrigues, S. Train, L. F. M. Velho & L. M. Bini, 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS ONE 9(10): e111227.

    Article  PubMed  PubMed Central  Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Padisák, J., G. Vasas & G. Borics, 2016. Phycogeography of freshwater phytoplankton: traditional knowledge and new molecular tools. Hydrobiologia 764: 3–27.

    Article  Google Scholar 

  • Paerl, H. W., H. Xu, M. J. McCarthy, G. Zhu, B. Qin, Y. Li & W. S. Gardner, 2011. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Research 45: 1973–1983.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Ricklefs, R. E. & D. Schluter, 1993. Species Diversity in Ecological Communities. Historical and Geographical Perspectives. The University of Chicago Press, Chicago.

    Google Scholar 

  • Rigosi, A. & F. Rueda, 2012. Hydraulic control of short-term successional changes in the phytoplankton assemblage in stratified reservoirs. Ecological Engineering 44: 216–226.

    Article  Google Scholar 

  • Salmaso, N., L. Naselli-Flores & J. Padisák, 2015. Functional classifications and their application in phytoplankton ecology. Freshwater Biology 60: 603–619.

    Article  Google Scholar 

  • Šmilauer, P. & J. Lepš, 2014. Multivariate Analysis of Ecological Data using Canoco 5, 2nd edn. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Souza, M. B. G., C. F. A. Barros, F. A. R. Barbosa, É. Hajnal & J. Padisák, 2008. The role of atelomixis in phytoplankton assemblages’ replacement in Dom Helvécio Lake, South-East Brazil. Hydrobiologa 607: 211–224.

    Article  CAS  Google Scholar 

  • Vergnon, R., N. K. Dulvy, & R. P. Freckleton, 2009. Niches versus neutrality: uncovering the drivers of diversity in a species-rich community. Ecology Letters 12: 1079–1090.

    Article  PubMed  Google Scholar 

  • Wang, C., X. Li, Z. Lai, Y. Li, A. Dauta & S. Lek, 2014 Patterning and predicting phytoplankton assemblages in a large subtropical river. Fundamental and Applied Limnology 185: 263–279.

    Article  Google Scholar 

  • Wilson, D. S., 1992. Complex interaction in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73: 1984–2000.

    Article  Google Scholar 

  • Xiao, L.-J., R. Hu, L. Peng, L.-M. Lei, Y. Feng & B.-P. Han, 2016. Dissimilarity of phytoplankton assemblages in two connected tropical reservoirs: effect of water transportation and environmental filters. Hydrobiologia 764: 127–138.

    Article  Google Scholar 

  • Zarfl, C., A. E. Lumsdon, J. Berlekamp, L. Tydecks & K. Tockner, 2015. A global boom in hydropower dam construction. Aquatic Sciences 77: 161–170.

    Article  Google Scholar 

Download references

Acknowledgements

Funding from the Science and Technology Project of Guangdong Province (No. 2013B080500022), the National Science Foundation of China (NSFC) (No. 41403061) and the Science and Technology Project of Guangdong Province (No. 2016A030313098) is acknowledged. Comments from two anonymous reviewers contributed to the improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Peng or Luigi Naselli-Flores.

Additional information

Guest editors: Koen Martens, Sidinei M. Thomaz, Diego Fontaneto & Luigi Naselli-Flores / Emerging Trends in Aquatic Ecology II

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, R., Duan, X., Peng, L. et al. Phytoplankton assemblages in a complex system of interconnected reservoirs: the role of water transport in dispersal. Hydrobiologia 800, 17–30 (2017). https://doi.org/10.1007/s10750-017-3146-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3146-y

Keywords

Navigation