Skip to main content
Log in

Unravelling the role of determinism and stochasticity in structuring the phytoplanktonic metacommunity of the Paraná River floodplain

  • PHYTOPLANKTON & SPATIAL GRADIENTS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

One of the ongoing debates around metacommunity ecology is to what extent stochastic and deterministic processes act on community assembly. We explored the influence of both determinism, mediated by environmental filters, and stochasticity, mediated by dispersal and ecological drift, on phytoplankton assembly in a floodplain river. A probabilistic co-occurrence model revealed the presence of 94.1% random and 5.9% non-random species pairwise associations. The latter were higher at both hydrologically isolated (4.42%) and connected environments (2.2%). Variation partitioning analysis showed similar significant explanations by the unique environmental (7.7%, Secchi, conductivity, vegetation, phosphorous) and spatial (7.2%, watercourse distance, longitude) components. Temporal variability was poorly represented (2.4%) because we only considered two low-water periods. Species co-occurrence patterns showed that most taxa coexist randomly. The environmental explanation is in line with niche-assembly models (species sorting), but the similar proportion explained by spatial organisation related to random dispersal guides the evidence to both deterministic and stochastic processes. The higher percentage of random co-occurrence and the larger assemblage variability observed in isolated environments suggests that random dispersal, ecological drift, and priority effects could promote stochasticity. We concluded that both processes affect the structure of phytoplankton metacommunities in a floodplain system and suggest the preponderance of stochastic organisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. Proceedings of 2nd International Symposium on Information Theory. Budapest. 267–281.

  • Amoros, C. & G. Bornette, 2002. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology 47: 761–776.

    Article  Google Scholar 

  • Amsler, M. L., E. C. Drago & A. R. Paira, 2007. Fluvial sediments: main channel and floodplain interrelationships. In Iriondo, M. H., J. J. Paggi & M. J. Parma (eds), The Middle Parana River: Limnology of a Subtropical Wetland. Springer, Berlin Heidelberg: 305–325.

    Google Scholar 

  • Anderson, M. J. & N. A. Gribble, 1998. Partitioning the variation among spatial, temporal and environmental components in a multivariate data set. Australian Journal of Ecology 23: 158–167.

    Article  Google Scholar 

  • Angeler, D. G., M. Alvarez-Cobelas, C. Rojo & S. Sánchez-Carrillo, 2010. Phytoplankton community similarity in a semiarid floodplain under contrasting hydrological connectivity regimes. Ecological Research 25: 513–520.

    Article  Google Scholar 

  • APHA, 2005. Standard Methods for the Examination of Water and Wastewaters, 21st ed. American Public Health Association, Washington.

    Google Scholar 

  • Arita, H. T., A. Christen, P. Rodríguez & J. Soberón, 2012. The presence–absence matrix reloaded: the use and interpretation of range-diversity plots. Global Ecology and Biogeography 21: 282–292.

    Article  Google Scholar 

  • Beisner, B. E., P. R. Peres-Neto, E. S. Lindström, A. Barnett & M. L. Longhi, 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87: 2985–2991.

    Article  PubMed  Google Scholar 

  • Benincà, E., J. Huisman, R. Heerkloss, K. D. Jöhnk, P. Branco, E. H. Van Nes, M. Scheffer & S. P. Ellner, 2008. Chaos in a long-term experiment with a plankton community. Nature 451: 822–825.

    Article  PubMed  Google Scholar 

  • Cardoso, S. J., F. Roland, S. M. Loverde-Oliveira & V. L. M. Huszar, 2012. Phytoplankton abundance, biomass and diversity within and between Pantanal wetland habitats. Limnologica 42: 235–241.

    Article  Google Scholar 

  • Carstensen, D. W. & J. M. Olesen, 2009. Wallacea and its nectarivorous birds: nestedness and modules. Journal of Biogeography 36: 1540–1550.

    Article  Google Scholar 

  • Chase, J. M. & J. A. Myers, 2011. Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society 366: 2351–2363.

    Article  Google Scholar 

  • Chase, J. M., 2007. Drought mediates the importance of stochastic community assembly. Proceedings of the National Academy of Sciences of the United States of America 104: 17430–17434.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chisholm, C., Z. Lindo & A. Gonzalez, 2011. Metacommunity diversity depends on connectivity and patch arrangement in heterogeneous habitat networks. Ecography 34: 415–424.

    Article  Google Scholar 

  • Chust, G., X. Irigoien, J. Chave & R. P. Harris, 2013. Latitudinal phytoplankton distribution and the neutral theory of biodiversity. Global Ecology and Biogeography 22: 531–543.

    Article  Google Scholar 

  • Cottenie, K., 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175–1182.

    Article  PubMed  Google Scholar 

  • de Tezanos Pinto, P. & I. O’Farrell, 2014. Regime shifts between free-floating plants and phytoplankton: a review. Hydrobiologia 740: 13–24.

    Article  Google Scholar 

  • Descy, J.-P., M. Leitao, E. Everbecq, J. S. Smitz & J.-F. Deliège, 2012. Phytoplankton of the River Loire, France: a biodiversity and modelling study. Journal of Plankton Research 34: 120–135.

    Article  Google Scholar 

  • Devercelli, M., 2010. Changes in phytoplankton morpho-functional groups induced by extreme hydroclimatic events in the middle Paraná River (Argentina). Hydrobiologia 1: 5–19.

    Article  Google Scholar 

  • Devercelli, M., Y. Z. de Domitrovic, M. Forastier & N. M. de Zaburlín, 2014. Phytoplankton of the Paraná River Basin. In: Tell, G., Izaguirre, I. & O’Farrell, I. (eds), Freshwater phytoplankton from Argentina. Fundamental and Applied Limnology, Vol. 65. Special Issue: Advances in Limnology : 39–65.

  • Drago, E. C., 2007. The physical dynamics of the river–lake floodplain system. In Iriondo, M. H., J. C. Paggi & M. J. Parma (eds), The Middle Paraná River: Limnology of a Subtropical Wetland. Springer, Berlin: 83–122.

    Chapter  Google Scholar 

  • Driscoll, D. A. & D. B. Lindenmayer, 2010. Assembly rules are rare in SE Australian bird communities, but sometimes apply in fragmented agricultural landscapes. Ecography 33: 854–865.

    Article  Google Scholar 

  • Frau, D., M. Devercelli, S. J. de Paggi, P. Scarabotti, G. Mayora, Y. Battauz & M. Senn, 2015. Can top-down and bottom-up forces explain phytoplankton structure in a subtropical and shallow groundwater connected lake? Marine and Freshwater Research. doi: 10.1071/MF14177

    Google Scholar 

  • Gotelli, N. J., 2000. Null model analysis of species co-occurrence patterns. Ecology 81: 2606–2621.

    Article  Google Scholar 

  • Gotelli, N. J. & G. R. Graves, 1996. Null Models in Ecology. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Gravel, D., C. D. Canham, M. Beaudet & C. Messier, 2006. Reconciling niche and neutrality: the continuum hypothesis. Ecology Letters 9: 399–409.

    Article  PubMed  Google Scholar 

  • Griffith, D. M., J. A. Veech & C. J. Marsh, 2014. Probabilistic Species Co-occurrence Analysis in R. Version 1.1. R Package.

  • Hastings, A., C. L. Hom, S. Ellner, P. Turchin & H. C. J. Godfray, 1993. Chaos in ecology: is mother nature a strange attractor? Annual Review of Ecology and Systematics 24: 1–33.

    Article  Google Scholar 

  • Heino, J., 2011. A macroecological perspective of diversity patterns in the freshwater realm. Freshwater Biology 56: 1703–1722.

    Article  Google Scholar 

  • Heino, J., A. S. Melo, T. Siqueira, J. Soininen, S. Valanko & L. M. Bini, 2014. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology. doi:10.1111/fwb.12533.

    Google Scholar 

  • Heino, J., J. Soininen, J. Alahuhta, J. Lappalainen & R. Virtanen, 2015. A comparative analysis of metacommunity types in the freshwater realm. Ecology and Evolution 5: 1525–1537.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–421.

    Article  Google Scholar 

  • Hilton, J. & E. Rigg, 1983. Determination of nitrate in lake water by the adaptation of the hydrazine-copper reduction method for use on a discrete analyzer: performance statistics and an instrument-induced difference from segmented flow conditions. Analyst 108: 1026–1028.

    Article  CAS  Google Scholar 

  • Holt, R. D., 2006. Asymmetry and stability. Nature 442: 252–253.

    Article  CAS  PubMed  Google Scholar 

  • Hubbell, S. P., 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, New Yersey.

    Google Scholar 

  • Hubbell, S. P., 2006. Neutral theory and the evolution of ecological equivalence. Ecology 87: 1387–1398.

    Article  PubMed  Google Scholar 

  • Izaguirre, I., G. Mataloni, L. Allende & A. Vinocur, 2001. Summer fluctuations of microbial planktonic communities in a eutrophic lake – Cierva Point, Antarctica. Journal of Plankton Research 23: 1095–1109.

    Article  CAS  Google Scholar 

  • Izaguirre, I., I. O’Farrell, F. Unrein, R. Sinistro, M. Dos Santos Afonso & G. Tell, 2004. Algal assemblages across a wetland, from a shallow lake to relictual oxbow lakes (Lower Paraná River, South America). Hydrobiologia 511: 25–36.

    Article  CAS  Google Scholar 

  • José de Paggi, S. & J. C. Paggi, 2007. Zooplankton. In Iriondo, M. H., J. J. Paggi & M. J. Parma (eds), The Middle Parana River: Limnology of a Subtropical Wetland. Springer, Berlin: 229–245.

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.

    Google Scholar 

  • Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Kuebbing, S. E., L. Souza & N. J. Sanders, 2013. Effects of co-occurring non-native invasive plant species on old-field succession. Forest Ecology and Management 324: 196–204.

    Article  Google Scholar 

  • Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations of ordinations of species data. Oecologia 129: 271–280.

    Article  Google Scholar 

  • Legendre, P. & O. Gauthier, 2014. Statistical methods for temporal and space–time analysis of community composition data. Proceedings of the Royal Society B 281: 20132728.

    Article  PubMed Central  PubMed  Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology, 2nd ed. Elsevier, Amsterdam.

    Google Scholar 

  • Legendre, P., D. Borcard & P. R. Peres-Neto, 2005. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs 75: 435–450.

    Article  Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • Lewin, R., 2000. Complexity: Life at the Edge of Chaos. University of Chicago Press, Chicago.

    Google Scholar 

  • Lewis, W. M. J., S. K. Hamilton, M. A. Lasi, M. Rodríguez & J. M. I. Saunders, 2000. Ecological determinism on the Orinoco floodplain. BioScience 50: 681–692.

    Article  Google Scholar 

  • Liu, J., J. Soininen, B. Han & S. A. J. Declerck, 2013. Effects of connectivity, dispersal directionality and functional traits on the metacommunity structure of river benthic diatoms. Journal of Biogeography 40: 2238–2248.

    Article  Google Scholar 

  • Logue, J. B., N. Mouquet, H. Peter & H. Hillebrand, 2011. Empirical approaches to metacommunities: a review and comparison with theory. Trends in Ecology & Evolution 26: 482–491.

    Article  Google Scholar 

  • MacKenzie, D. I., L. L. Bailey & J. Nichols, 2004. Investigating species co-occurrence patterns when species are detected imperfectly. Journal of Animal Ecology 73: 546–555.

    Article  Google Scholar 

  • Marchetti, Z. Y., E. M. Latrubesse, M. S. Pereira & C. G. Ramonell, 2013. Vegetation and its relationship with geomorphologic units in the Parana River floodplain, Argentina. Journal of South American Earth Sciences 46: 122–136.

    Article  Google Scholar 

  • Mayora, G., M. Devercelli & F. Giri, 2013. Spatial variability of chlorophyll-a and abiotic variables in a river – floodplain system during different hydrological phases. Hydrobiologia 717: 51–63.

    Article  CAS  Google Scholar 

  • Nabout, J. C., T. Siqueira, L. M. Bini & I. D. S. Nogueira, 2009. No evidence for environmental and spatial processes in structuring phytoplankton communities. Acta Oecologica 35(5): 720–726.

    Article  Google Scholar 

  • Neiff, J. J., 1990. Ideas para la interpretación ecológica del Paraná. Interciencia 15: 424–441.

    Google Scholar 

  • O’Farrell, I., I. Izaguirre & A. Vinocur, 1996. Phytoplankton ecology of the Lower Paraná River (Argentina). Large Rivers, Archiv für Hydrobiologie Supplement 115: 75–89.

    Google Scholar 

  • O’Farrell, I., P. de Tezanos Pinto & I. Izaguirre, 2007. Phytoplankton morphological response to the underwater light conditions in a vegetated wetland. Hydrobiologia 578: 65–77.

    Article  Google Scholar 

  • Økland, R. H., 1999. On the variation explained by ordination and constrained ordination axes. Journal of Vegetation Science 10: 131–136.

    Article  Google Scholar 

  • Padial, A. A., F. Ceschin, S. A. Declerck, L. De Meester, C. C. Bonecker, F. A. Lansac-Tôha & L. M. Bini, 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PloS One 9(10): e111227.

    Article  PubMed Central  PubMed  Google Scholar 

  • Patterson, B. D. & W. Atmar, 1986. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biological Journal of the Linnean Society 28: 65–82.

    Article  Google Scholar 

  • Pitta, E., S. Giokas & S. Sfenthourakis, 2012. Significant pairwise co-occurrence patterns are not the rule in the majority of biotic communities. Diversity 4: 179–193.

    Article  Google Scholar 

  • Pott, V. J. & A. Pott, 2000. Plantas aquáticas do Pantanal. Embrapa. Centro de Pesquisa Agropecuárica do Pantanal, Corumbá.

    Google Scholar 

  • R Development Core Team, 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Version R version 3.1.0 (2014-04-10) [available on internet at http://www.R-project.org].

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Ricklefs, R. E. & D. Schluter, 1993. Species Diversity in Ecological Communities. Historical and Geographical Perspectives. The University of Chicago Press, Chicago.

    Google Scholar 

  • Ringelberg, J. & K. Kersting, 1978. Properties of an aquatic microecosystem: I. General introduction to the prototypes. Archiv für Hydrobiologie 83: 47–68.

    Google Scholar 

  • Rocha, R. R. A., S. M. Thomaz, P. Carvalho & L. C. Gomes, 2009. Modeling chlorophyll-a and dissolved oxygen concentration in tropical floodplain lakes (Paraná River, Brazil). Brazilian Journal of Biology 69: 491–500.

    Article  CAS  Google Scholar 

  • Round, F. E., R. M. Crawford & D. G. Mann, 1990. The Diatoms: Biology and Morphology of the Genera. Cambridge University Press, Cambridge.

    Google Scholar 

  • Scheffer, M., 1999. Searching explanations of nature in the mirror world of math. Conservation Ecology 3(2): 11 [available on internet at http://www.consecol.org/vol3/iss2/art11/].

  • Scheffer, M. & E. H. van Nes, 2006. Self-organized similarity, the evolutionary emergence of groups of similar species. Proceedings of the Natural Academy of Sciences of the USA 103: 6230–6235.

    Article  CAS  Google Scholar 

  • Sfenthourakis, S., E. Tzanatos & S. Giokas, 2006. Species co-occurrence: the case of congeneric species and a causal approach to patterns of species association. Global Ecology and Biogeography 15: 39–49.

    Article  Google Scholar 

  • Silva, I. A. & M. A. Batalha, 2010. Woody plant species co-occurrence in Brazilian savannas under different fire frequencies. Acta Oecologica 36: 85–91.

    Article  Google Scholar 

  • Sinistro, R., 2010. Top-down and bottom-up regulation of planktonic communities in a warm temperate wetland. Journal of Plankton Research 32: 200–220.

    Article  Google Scholar 

  • Smale, S., 1998. Finding a horseshoe on the beaches of Rio. The Mathematical Intelligencer 20(1): 39–44.

    Article  Google Scholar 

  • Soininen, J., 2014. A quantitative analysis of species sorting across organisms and ecosystems. Ecology 95: 3284–3292.

    Article  Google Scholar 

  • Soininen, J., 2015. Spatial structure in ecological communities – a quantitative analysis. Oikos. doi:10.1111/oik.02241.

    Google Scholar 

  • Soininen, J., M. Kokocinski, S. Estlander, J. Kotanen & J. Heino, 2007. Neutrality, niches and determinants of plankton metacommunity structure across boreal wetland ponds. Ecoscience 14: 146–154.

    Article  Google Scholar 

  • Soininen, J., J. J. Korhonen & M. Luoto, 2013. Stochastic species distributions are driven by organism size. Ecology 94: 660–670.

    Article  PubMed  Google Scholar 

  • Sommer, U., 1984. The paradox of the plankton: fluctuations of phosphorus availability maintain diversity of phytoplankton in flow-through cultures. Limnology and Oceanography 29: 633–636.

    Article  Google Scholar 

  • ter Braak, C. J. F. & P. Šmilauer, 2012. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0. Microcomputer Power, Ithaca.

    Google Scholar 

  • Thorp, J. H., M. C. Thoms & M. D. Delong, 2006. The Riverine Ecosystem Synthesis. Academic Press, Boston.

    Google Scholar 

  • Train, S. & L. C. Rodrigues, 1998. Temporal fluctuations of the phytoplankton community of the Baía River, in the Upper Paraná River floodplain, Mato Grosso do Sul, Brazil. Hydrobiologia 361: 125–134.

    Article  Google Scholar 

  • Ulrich, W. & M. Zalewski, 2006. Abundance and co-occurrence patterns of core and satellite species of ground beetles on small lake islands. Oikos 114: 338–348.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen phytoplankton-methodik. Mitteilungen. Internationale Vereiningung fuer Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Van den Brink, F. W. B., J. P. H. M. De Leuw, G. Van der Velde & G. M. Verheggen, 1993. Impact of hydrology on the chemistry and phytoplankton development in floodplain lakes along the Lower Rhine and Meuse. Biogeochemistry 19: 103–128.

    Article  Google Scholar 

  • Vanormelingen, P., K. Cottenie, E. Michels, K. Muylaert, W. Vyverman & L. De Meester, 2008. The relative importance of dispersal and local processes in structuring phytoplankton communities in a set of highly interconnected ponds. Freshwater Biology 53: 2170–2183.

    Google Scholar 

  • Veech, J. A., 2013. A probabilistic model for analysing species co-occurrence. Global Ecology and Biogeography 22: 252–260.

    Article  Google Scholar 

  • Veech, J. A., 2014. The pairwise approach to analysing species co-occurrence. Journal of Biogeography 41: 1029–1035.

    Article  Google Scholar 

  • Vellend, M., D. S. Srivastava, K. M. Anderson, C. D. Brown, J. E. Jankowski, E. J. Kleynhans, N. J. B. Kraft, A. D. Letaw, A. A. M. Macdonald, J. E. Maclean, I. H. Myers-Smith, A. R. Norris & X. Xue, 2014. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123: 1420–1430.

    Article  Google Scholar 

  • Vergnon, R., N. K. Dulvy & R. P. Freckleton, 2009. Niches versus neutrality: uncovering the drivers of diversity in a species-rich community. Ecology letters 12: 1079–1090.

    Article  PubMed  Google Scholar 

  • Wehr, J. D. & J. P. Descy, 1998. Use of phytoplankton in large river management. Journal of Plankton Research 34: 741–749.

    Google Scholar 

  • Wilson, D. S., 1992. Complex interaction in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73: 1984–2000.

    Article  Google Scholar 

  • Zalocar de Domitrovic, Y., M. Devercelli & M. O. García de Emiliani, 2007. Phytoplankton. In Iriondo, M. H., J. C. Paggi & M. J. Parma (eds), The Middle Paraná River: Limnology of a Subtropical Wetland. Springer, Berlin: 177–203.

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Cristian Debonis, Esteban Creus, and Marcelo Piacenza for their field assistance, and the members of the Laboratory of Plankton (INALI) for their cooperative work. We also thank to the three reviewers for their insightful suggestions that largely improved the manuscript, and to Dr. D. M. Griffith for his help in disentangling some aspects of the co-occurrence analysis. This work was funded by Agencia Nacional de Promoción Científica y Tecnológica (PICT 2012-2095), and supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). The “Metacommunity Project” is led by Dr. M. Marchese, and MD and PS are grateful for her in introducing them into such a thrilling scenario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melina Devercelli.

Additional information

Guest editors: Luigi Naselli-Flores & Judit Padisák / Biogeography and Spatial Patterns of Biodiversity of Freshwater Phytoplankton

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devercelli, M., Scarabotti, P., Mayora, G. et al. Unravelling the role of determinism and stochasticity in structuring the phytoplanktonic metacommunity of the Paraná River floodplain. Hydrobiologia 764, 139–156 (2016). https://doi.org/10.1007/s10750-015-2363-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2363-5

Keywords

Navigation