Skip to main content

Advertisement

Log in

Bacterial community composition and carbon metabolism in a subtropical riverscape

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

To better understand the interaction between the abundance and composition of bacterial communities, physicochemical conditions, and bacterial metabolic function, we studied the patterns of bacterial community composition and metabolic function in relation to nutrients, land use, and network position in a large subtropical river. Composition varied across the watershed, and with variation in nutrients in particular. Although these changes were partially driven by overall abundance, bacterial groups responded to nutrients differently across the watershed. Most groups were correlated with suspended particulate materials, yet, abundance of β-proteobacteria was highest with elevated nitrate, and abundance of Actinobacteria was highest with elevated soluble reactive phosphate. Land use weakly influenced composition. Landscape position influenced composition, with downstream mainstem riverine sites differing from more upstream and tributary sites. Both production and respiration were influenced by temperature and organic carbon, but we found that production and growth efficiency were not directly related. Production peaked at intermediate levels of abundance, but no groups were correlated with production. Respiration by free-floating bacteria was positively correlated with proportional abundance of α-proteobacteria, γ-proteobacteria, and Actinobacteria. Finally, we found that land use was a relatively weak influence on community composition, but that variation in nutrients was relatively important for both composition and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams, H. E., B. C. Crump & G. W. Kling, 2010. Temperature controls on aquatic bacterial production and community dynamics in arctic lakes and streams. Environmental Microbiology 12: 1319–1333.

    Article  CAS  PubMed  Google Scholar 

  • Amado, A. M., F. Meirelles-Pereira, L. O. Vidal, H. Sarmento, A. L. Suhett, V. F. Farjalla, J. B. Cotner & F. Roland, 2013. Tropical freshwater ecosystems have lower bacterial growth efficiency than temperate ones. Frontiers in Microbiology 4: 167.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson-Glenna, M. J., V. Bakkestuen & N. J. W. Clipson, 2008. Spatial and temporal variability in epilithic biofilm bacterial communities along an upland river gradient. FEMS Microbiology Ecology 64: 407–418.

    Article  CAS  PubMed  Google Scholar 

  • APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Barlett, M. A. & L. G. Leff, 2010. Planktonic bacterial responses to nutrient amendments in wetland mesocosms. Wetlands 30: 1161–1170.

    Article  Google Scholar 

  • Basu, B. K. & F. R. Pick, 1996. Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnology and Oceanography 41: 1572–1577.

    Article  CAS  Google Scholar 

  • Battin, T. J., L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold & F. Sabater, 2008. Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience 1: 95–100.

    Article  CAS  Google Scholar 

  • Becker, J. C., K. R. Rodibaugh, B. J. Labay, T. H. Bonner, Y. Zhang & W. H. Nowlin, 2014. Physiographic gradients determine nutrient concentrations more than land use in a Gulf Slope (USA) river system. Freshwater Science 33: 731–744.

    Article  Google Scholar 

  • Berggren, M. & P. A. del Giorgio, 2015. Distinct patterns of microbial metabolism associated to riverine dissolved organic carbon of different source and quality. Journal of Geophysical Research: Biogeosciences 120: 989–999.

    CAS  Google Scholar 

  • Berggren, M., H. Laudon & M. Jansson, 2007. Landscape regulation of bacterial growth efficiency in boreal freshwaters. Global Biogeochemical Cycles 21: GB4002.

    Article  Google Scholar 

  • Berggren, M., H. Laudon & M. Jansson, 2009. Aging of allochthonous organic carbon regulates bacterial production in unproductive boreal lakes. Limnology and Oceanography 54: 1333–1342.

    Article  CAS  Google Scholar 

  • Berggren, M., H. Laudon, A. Jonsson & M. Jansson, 2010. Nutrient constraints on metabolism affect the temperature regulation of aquatic bacterial growth efficiency. Microbial Ecology 60: 894–902.

    Article  CAS  PubMed  Google Scholar 

  • Bergström, A. K. & M. Jansson, 2000. Bacterioplankton production in humic Lake Ortrasket in relation to input of bacterial cells and input of allochthonous organic carbon. Microbial Ecology 39: 101–115.

    Article  PubMed  Google Scholar 

  • Biddanda, B., M. Ogdahl & J. Cotner, 2001. Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters. Limnology and Oceanography 46: 730–739.

    Article  Google Scholar 

  • Bier, R. L., E. S. Bernhardt, C. M. Boot, E. B. Graham, E. K. Hall, J. T. Lennon, D. R. Nemergut, B. B. Osborne, C. Ruiz-González, J. P. Schimel, M. P. Waldro & M. D. Wallenstein, 2015. Linking microbial community structure and microbial processes: an empirical and conceptual overview. FEMS Microbiology 91: fiv113.

    Article  Google Scholar 

  • Bouvier, T. & P. A. del Giorgio, 2003. Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports. FEMS Microbiology Ecology 44: 3–15.

    Article  CAS  PubMed  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2004. Multimodel inference-understanding AIC and BIC in model selection. Sociological Methods & Research 33: 261–304.

    Article  Google Scholar 

  • Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg & J. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184.

    Article  CAS  Google Scholar 

  • Comte, J. & P. A. del Giorgio, 2011. Composition influences the pathway but not the outcome of the metabolic response of bacterioplankton to resource shifts. PLoS ONE 6: e25266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotner, J. B. & B. A. Biddanda, 2002. Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5: 105–121.

    Article  CAS  Google Scholar 

  • Crump, B. C., H. E. Adams, J. E. Hobbie & G. W. Kling, 2007. Biogeography of bacterioplankton in lakes and streams of an arctic tundra catchment. Ecology 88: 1365–1378.

    Article  PubMed  Google Scholar 

  • Crumpton, W. G., T. M. Isenhart & P. D. Mitchell, 1992. Nitrate and organic N analyses with 2nd-derivative spectroscopy. Limnology and Oceanography 37: 907–913.

    Article  CAS  Google Scholar 

  • del Giorgio, P. A. & T. C. Bouvier, 2002. Linking the physiologic and phylogenetic successions in free-living bacterial communities along an estuarine salinity gradient. Limnology and Oceanography 47: 471–486.

    Article  Google Scholar 

  • del Giorgio, P. A. & J. J. Cole, 1998. Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics 29: 503–541.

    Article  Google Scholar 

  • del Giorgio, P. A. & M. L. Pace, 2008. Relative independence of dissolved organic carbon transport and processing in a large temperate river: the Hudson River as both pipe and reactor. Limnology and Oceanography 53: 185–197.

    Article  Google Scholar 

  • del Giorgio, P. A., M. L. Pace & D. Fischer, 2006. Relationship of bacterial growth efficiency to spatial variation in bacterial activity in the Hudson River. Aquatic Microbial Ecology 45: 55–67.

    Article  Google Scholar 

  • Falkowski, P. G., T. Fenchel & E. F. Delong, 2008. The microbial engines that drive Earth’s biogeochemical cycles. Science 320: 1034–1039.

    Article  CAS  PubMed  Google Scholar 

  • Fellman, J. B., R. G. M. Spencer, P. A. Raymond, N. E. Petit, G. Skrzypek, P. J. Hernes & P. F. Grierson, 2014. Dissolved organic carbon biolability decreases along with its modernization in fluvial networks in an ancient landscape. Ecology 95: 2622–2632.

    Article  Google Scholar 

  • Findlay, S., 2010. Stream microbial ecology. Journal of the North American Benthological Society 29: 170–181.

    Article  Google Scholar 

  • Gao, X. Q., O. A. Olapade & L. G. Leff, 2005. Comparison of benthic bacterial community composition in nine streams. Aquatic Microbial Ecology 40: 51–60.

    Article  Google Scholar 

  • Glöckner, F. O., B. M. Fuchs & R. Amann, 1999. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Applied and Environmental Microbiology 65: 3721–3726.

    PubMed  PubMed Central  Google Scholar 

  • Guillemette, F., S. L. McCallister & P. A. del Giorgio, 2013. Differentiating the degradation dynamics of algal and terrestrial carbon within complex natural dissolved organic carbon in temperate lakes. Journal of Geophysical Research: Biogeosciences 118: 963–973.

    CAS  Google Scholar 

  • Guillemette, F., S. L. McCallister & P. A. del Giorgio, 2016. Selective consumption and metabolic allocation of terrestrial and algal carbon determine allochthony in lake bacteria. The ISME Journal 10: 1373–1382.

    Article  CAS  PubMed  Google Scholar 

  • Greuter, D., A. Loy, M. Horn & T. Rattei, 2016. probeBase—an online resource for rRNA-targeted oligonucleotide probes and primers: new features 2016. Nucleic Acids Research 44: D586–D589.

    Article  PubMed  Google Scholar 

  • Jenkins, D. G., K. A. Medley & R. B. Franklin, 2011. Microbes as a test of biogeographic principles. In Fontaneto, D. (ed), Biogeography of Microscopic Organisms: Is Everything Small Everywhere. Cambridge University Press, New York: 309–323.

    Chapter  Google Scholar 

  • Jones, S. E. & J. T. Lennon, 2010. Dormancy contributes to the maintenance of microbial diversity. Proceedings of the National Academy of Sciences of the United States of America 107: 5881–5886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchman, D. L., A. I. Dittel, S. E. G. Findlay & D. Fischer, 2004. Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River, New York. Aquatic Microbial Ecology 35: 243–257.

    Article  Google Scholar 

  • Kirchman, D. L., A. I. Dittel, R. R. Malmstrom & M. T. Cottrell, 2005. Biogeography of major bacterial groups in the Delaware Estuary. Limnology and Oceanography 50: 1697–1706.

    Article  CAS  Google Scholar 

  • Kritzberg, E. S., J. J. Cole, M. M. Pace & W. Graneli, 2005. Does autochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial C inputs? Aquatic Microbial Ecology 38: 103–111.

    Article  Google Scholar 

  • Langenheder, S., E. S. Lindstrom & L. J. Tranvik, 2005. Weak coupling between community composition and functioning of aquatic bacteria. Limnology and Oceanography 50: 957–967.

    Article  Google Scholar 

  • Lear, G., V. Washington, M. Neale, B. Case, H. Buckley & G. Lewis, 2013. The biogeography of stream bacteria. Global Ecology and Biogeography 22: 544–554.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 2012. Numerical Ecology, 3rd ed. Elsevier, Oxford.

    Google Scholar 

  • Lindström, E. S., X. M. Feng, W. Graneli & E. S. Kritzberg, 2010. The interplay between bacterial community composition and the environment determining function of inland water bacteria. Limnology and Oceanography 55: 2052–2060.

    Article  Google Scholar 

  • Liu, L. M., J. Yang, X. Q. Yu, G. J. Chen & Z. Yu, 2013. Patterns in the composition of microbial communities from a subtropical river: effects of environmental, spatial and temporal factors. PLoS ONE 8: e81232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maranger, R. J., M. L. Pace, P. A. del Giorgio, N. F. Caraco & J. J. Cole, 2005. Longitudinal spatial patterns of bacterial production and respiration in a large river-estuary: implications for ecosystem carbon consumption. Ecosystems 8: 318–330.

    Article  CAS  Google Scholar 

  • McCallister, S. L. & P. A. del Giorgio, 2008. Direct measurement of the δ13C signature of carbon respired by bacteria in lakes: linkages to potential carbon sources, ecosystem baseline metabolism, and CO2 fluxes. Limnology and Oceanography 53: 1204–1216.

    Article  CAS  Google Scholar 

  • McCallister, S. L. & P. A. del Giorgio, 2012. Evidence for the respiration of ancient terrestrial organic C in northern temperate lakes and streams. Proceedings of the National Academy of Sciences of the United States of America 109: 16963–16968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niño-Garcia, J. P., C. Ruiz-González & P. A. del Giorgio, 2016. Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks. The ISME Journal 10: 1755–1766.

    Article  PubMed  Google Scholar 

  • Ochs, C. A., H. E. Capello & O. Pongruktham, 2010. Bacterial production in the Lower Mississippi River: importance of suspended sediment and phytoplankton biomass. Hydrobiologia 637: 19–31.

    Article  CAS  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2012. vegan: Community Ecology Package. Version 2.0-5.

  • Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

    Article  PubMed  Google Scholar 

  • Pérez, M. T. & R. Sommaruga, 2006. Differential effect of algal- and soil-derived dissolved organic matter on alpine lake bacterial community composition and activity. Limnology and Oceanography 51: 2527–2537.

    Article  Google Scholar 

  • Pérez, M. T. & R. Sommaruga, 2011. Temporal changes in the dominance of major planktonic bacterial groups in an alpine lake: discrepancy with their contribution to bacterial production. Aquatic Microbial Ecology 63: 161–170.

    Article  Google Scholar 

  • R Core Team, 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Ram, A. S. P., S. Nair & D. Chandramohan, 2007. Bacterial growth efficiency in a tropical estuary: seasonal variability subsidized by allochthonous carbon. Microbial Ecology 53: 591–599.

    Article  CAS  Google Scholar 

  • Ramette, A., 2007. Multivariate analyses in microbial ecology. FEMS Microbiology Ecology 62: 142–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Read, D. S., H. S. Gweon, M. J. Bowes, L. K. Newbold, D. Field, M. J. Bailey & R. I. Griffiths, 2015. Catchment-scale biogeography of riverine bacterioplankton. The ISME Journal 9: 516–526.

    Article  CAS  PubMed  Google Scholar 

  • Roiha, T., M. Tiirola, M. Cazzanelli & M. Rautio, 2012. Carbon quantity defines productivity while its quality defines community composition of bacterioplankton in subarctic ponds. Aquatic Sciences 74: 513–525.

    Article  CAS  Google Scholar 

  • Roland, F., N. F. Caraco & J. J. Cole, 1999. Rapid and precise determination of dissolved oxygen by spectrophotometry: evaluation of interference from color and turbidity. Limnology and Oceanography 44: 1148–1154.

    Article  CAS  Google Scholar 

  • Rubin, M. A. & L. G. Leff, 2007. Nutrients and other abiotic factors affecting bacterial communities in an Ohio River (USA). Microbial Ecology 54: 374–383.

    Article  PubMed  Google Scholar 

  • Ruiz-González, C., L. Proia, I. Ferrera, J. M. Gasol & S. Sabater, 2013. Effects of large river dam regulation on bacterioplankton community structure. FEMS Microbiology Ecology 84: 316–331.

    Article  PubMed  Google Scholar 

  • Ruiz-González, C., G. Salazar, R. Logares, L. Proia, J. M. Gasol & S. Sabater, 2015a. Weak coherence in abundance patterns between bacterial classes and their constituent OTUs along a regulated river. Frontiers in Microbiology 6: 1293.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-González, C., J. P. Niño-Garcia, J.-F. Lapierre & P. A. del Giorgio, 2015b. The quality of organic matter shapes the functional biogeography of bacterioplankton across boreal freshwater ecosystems. Global Ecology and Biogeography 24: 1487–1498.

    Article  Google Scholar 

  • Ruiz-González, C., J. P. Niño-Garcia & P. A. del Giorgio, 2015c. Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecology Letters 18: 1198–1206.

    Article  Google Scholar 

  • Salcher, M. M., T. Posch & J. Pernthaler, 2013. In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake. The ISME Journal 7: 896–907.

    Article  CAS  PubMed  Google Scholar 

  • Simon, M. & F. Azam, 1989. Protein-content and protein-synthesis rates of planktonic marine bacteria. Marine Ecology Progress Series 51: 201–213.

    Article  CAS  Google Scholar 

  • Smith, D. C. & F. Azam, 1992. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Marine Microbial Food Webs 6: 107–114.

    Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S, 4th ed. Springer, New York.

    Book  Google Scholar 

  • Vidal, L. O., W. Graneli, C. B. Daniel, L. Heiberg & F. Roland, 2011. Carbon and phosphorus regulating bacterial metabolism in oligotrophic boreal lakes. Journal of Plankton Research 33: 1747–1756.

    Article  CAS  Google Scholar 

  • Wang, Y., L. Liu, H. Chen & J. Yang, 2015. Spatiotemporal dynamics and determinants of planktonic bacterial and microeukaryotic communities in a Chinese subtropical river. Applied Microbiology and Biotechnology 21: 9255–9266.

    Article  Google Scholar 

  • Warkentin, M., H. M. Freese & R. Schumann, 2011. Bacterial activity and bacterioplankton diversity in the eutrophic river warnow—direct measurement of bacterial growth efficiency and its effect on carbon utilization. Microbial Ecology 61: 190–200.

    Article  PubMed  Google Scholar 

  • Warton, D. I. & F. K. C. Hui, 2011. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92: 3–10.

    Article  PubMed  Google Scholar 

  • Westhorpe, D. P., S. M. Mitrovic, D. Ryan & T. Kobayashi, 2010. Limitation of lowland riverine bacterioplankton by dissolved organic carbon and inorganic nutrients. Hydrobiologia 652: 101–117.

    Article  CAS  Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1991. Limnological Analyses, 2nd ed. Springer Science + Business Media Inc, New York.

    Book  Google Scholar 

  • Zarda, B., D. Hahn, A. Chatzinotas, W. Schonhuber, A. Neef, R. I. Amann & J. Zeyer, 1997. Analysis of bacterial community structure in bulk soil by in situ hybridization. Archives of Microbiology 168: 185–192.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Alexandra Smith, Alisa Abuzeineh, Ben Labay, Chad Thomas, Cori Schwartz, David Hambright, Frances Lash, Josh Perkin, Katheryn Gilson, Kristen Epp, Matthew Chumchal, Mario Sullivan, Robert Maxwell, Timothy Bonner, and Yixin Zhang for their help and support for this project. We thank the Bernot labs at Ball State University for an early review of this manuscript. We thank three anonymous reviewers for their time and input that helped improve the manuscript. The Nature Conservancy, the Houston Endowment Inc., and the Brazos River Authority provided funding for this project. Additional support was provided by National Science Foundation grant DGE-0742306 to W. Nowlin, T. Bonner, and J. Becker, as well as the Fred & Yetta Richan Aquatic Biology Award and H.D. Schulze scholarships to J. Becker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse C. Becker.

Additional information

Handling editor: Stefano Amalfitano

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, J.C., Rodibaugh, K.J., Hahn, D. et al. Bacterial community composition and carbon metabolism in a subtropical riverscape. Hydrobiologia 792, 209–226 (2017). https://doi.org/10.1007/s10750-016-3058-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-3058-2

Keywords

Navigation